R/minimum.diameter.spanning.tree.R

Defines functions local.center absolute.one.center minimum.diameter.spanning.tree edge.length connect.mds.forest

# connect the MDST of disconnected components of the graph
connect.mds.forest <- function(g) {
  clu <- clusters(g)
  trees <- lapply(1:clu$no, function(i) {
    sg <- induced.subgraph(g, which(clu$membership == i))
    if (clu$csize[i] == 1) {
      list(root=V(sg)$name, edges=matrix(NA,nrow=0,ncol=2))
    } else {
      tree <- minimum.diameter.spanning.tree(sg)
      vnames <- V(tree)$name
      edges <- matrix(vnames[get.edges(tree, E(tree))], ncol=2)
      root <- vnames[degree(tree, mode="in")==0]
      list(root=root, edges=edges)
    }
  })

  root <- trees[[1]]$root
  h <- graph.empty()
  h <- h + vertex(V(g)$name)
  for (tree in trees) {
    h <- h + edges(t(tree$edges))
    if (tree$root != root) {
      h <- h + edge(root, tree$root)
    }
  }

  h
}


edge.length <- function(g, e) {
  w <- get.edge.attribute(g, 'weight', e)
  if (is.null(w)) 1 else w
}

minimum.diameter.spanning.tree <- function(graph) {
  l <- function(edge) { edge.length(graph, edge) }

  # Determine the center of the graph
  f <- absolute.one.center(graph)
  dc <- f['t'] - 0.5 * l(f['e'])
  v <- ends(graph, f['e'], names=FALSE)
  if (dc < 0 || (dc == 0 && v[1] < v[2])) {
    edgelist <- v
  } else {
    edgelist <- rev(v)
  }

  # For each vertex, if the center is on (v[1], v[2]), determine which of the shortest paths through v[1] or v[2] to the center is shorter
  d <- shortest.paths(graph, mode="all")
  t1 <- f['t']
  t2 <- l(f['e']) - t1
  v.rem <- V(graph)[!(1:length(V(graph)) %in% v)]
  pairs <- sapply(v.rem, function(u) {
    d2 <- c(t1 + d[v[1], u, drop=TRUE], t2 + d[v[2], u, drop=TRUE])
    if (d2[1] < d2[2] || (d2[1] == d2[2] && v[1] < v[2])) {
      c(v[1], u)
    } else {
      c(v[2], u)
    }
  })
  pairs <- as.matrix(pairs) # necessary if there is only one pair

  h <- graph.empty()
  h <- h + vertex(V(graph))
  V(h)$name <- V(graph)$name
  h <- h + edge(edgelist)
  if (ncol(pairs) > 0 && nrow(pairs) > 0) {
    for (i in 1:ncol(pairs)) {
      p <- get.shortest.paths(graph, pairs[1, i, drop=TRUE], pairs[2, i, drop=TRUE], mode="all")
      if (is.list(p) && "vpath" %in% names(p)) { p <- p$vpath[[1]] } else { p <- p[[1]] }
      if (length(p) == 2) {
        h <- h + edge(p) # bug in one-edge paths?
      } else {
        h <- h + path(p)
      }
    }
  }
  simplify(h)
}

# Find the absolute 1-center of an undirected graph.
#
# Let e = (u,v) be an edge of the graph, and l(e) the length of e.
# Let x(e) be a point along the edge, with t = t(x(e)) \in [0, l(e)] the distance of x(e) from u.
# Then, for any point x on G, d(v, x) is the length of the shortest path in G between the vertex v and point x.
# Define F(x) = \max_{v \in V} d(v, x), and x* = \arg\min_{x on G} F(x).
# x* is the absolute 1-center of G and F(x*) is the absolute 1-radius of G.
#
# Algorithm from <a href="http://www.jstor.org/pss/2100910">Kariv and Hakimi (1979), SIAM J Appl Math 37 (3): 513-538</a>.
#
# (Note: in the paper, the weight of an edge is referred to as its length l(e), and vertices can also have weights w(v).
# Only the vertex-unweighted algorithm is implemented. Edge-weighted graphs are supported, however.)
absolute.one.center <- function(g) {
  f <- sapply(E(g), function(edge) { local.center(g, edge) })
  v <- sapply(E(g), function(edge) { ends(g, edge, names=FALSE) })
  i <- order(f['r',], v[1,], v[2,])[1]
  f[, i, drop=TRUE]
}

# A few conventions:
#  - a point along an edge is represented by a pair x = (e, t) where e is the edge index and t is the
#  distance from the left vertex
#  - a center is a triple f = (e, t, r) where (e, t) is a point and r is the graph's radius around that
#  point
local.center <- function(graph, edge) {
  d <- shortest.paths(graph)

  # L(v): vertices ordered by distance from v
  L <- t(apply(d, 2, function(x) { order(-x, V(graph)) }))

  # l(e): length of edge e
  l <- function(edge) { edge.length(graph, edge) }

  # left and right vertices of an edge
  vr <- function(edge) { ends(graph, edge, names=FALSE)[1] }
  vs <- function(edge) { ends(graph, edge, names=FALSE)[2] }

  # de(x, v): distance between point x and vertex v
  de <- function(x, v) {
    min(
      x['t'] + d[vr(x['e']), v, drop=TRUE],
      l(x['e']) - x['t'] + d[vs(x['e']), v, drop=TRUE]
    )
  }

  # Given an edge e = (e0, e1) and vertices u and v, find the distance t* \in
  # (0, l(e)) from e0 where D_e(u, t*) = D_e(v, t*), and D_e(u, t*) and
  # D_e(v, t*) have opposite signs (if it exists).
  intersect <- function(e, u, v) {
    e0 <- vr(e)
    e1 <- vs(e)
    lu <- d[e0, u, drop=TRUE]
    ru <- d[e1, u, drop=TRUE]
    lv <- d[e0, v, drop=TRUE]
    rv <- d[e1, v, drop=TRUE]

    if (lu == lv || ru == rv) { # they coincide or intersect only at the edge
      NA
    } else if (lu > lv && ru > rv) { # u dominates v
      NA
    } else if (lu < lv && ru < rv) { # v dominates u
      NA
    } else {
      t1 <- 0.5 * (rv - lu + l(e));
      t2 <- 0.5 * (ru - lv + l(e));
      if (t1 + lu <= l(e) - t1 + ru) {
        t1
      } else {
        t2
      }
    }
  }

  # Step 1: treatment of t = 0 and t = l(e)
  step1 <- function() {
    xr <- c('e' = edge, 't' = 0)
    xs <- c('e' = edge, 't' = l(edge))
    dr <- de(xr, L[vr(edge), 1, drop=TRUE])
    ds <- de(xs, L[vs(edge), 1, drop=TRUE])
    f <- if (dr <= ds) c(xr, 'r' = dr) else c(xs, 'r' = ds)

    if (L[vr(edge), 1, drop=TRUE] == L[vs(edge), 1, drop=TRUE]) f
    else step3(f, L[vr(edge), 1, drop=TRUE], 1)
  }

  # Step 3: treatment of vertices v s.t. D_e(v, 0) = D_e(v_1, 0)
  # f: The suspected center
  # vm: Vertex to consider
  # i: Index of the last-treated vertex
  # Returns the local center
  step3 <- function(f, vm, i) {
    v <- L[vr(f['e']), i + 1, drop=TRUE]
    xr <- c(f['e'], 't' = 0)
    xs <- c(f['e'], 't' = l(f['e']))
    if (de(xs, v) != de(xs, vm)) {
      step4(f, vm, i + 1)
    } else if (de(xr, v) > de(xs, vm)) {
      step3(f, v, i + 1) # v_m <- v*
    } else {
      step3(f, vm, i + 1)
    }
  }

  step4 <- function(f, vm, i) {
    vbar <- vm
    if (i == nrow(d)) {
      step8(f, vbar)
    } else {
      vm <- L[vr(f['e']), i, drop=TRUE]
      step5(f, vm, vbar, i)
    }
  }

  # Step 5: find all vertices v s.t. D_e(v, 0) = D_e(v_i, 0) and find the corresponding v_m.
  step5 <- function(f, vm, vbar, i) {
    v <- L[vr(f['e']), i + 1, drop=TRUE]
    xr <- c(f['e'], 't' = 0)
    xs <- c(f['e'], 't' = l(f['e']))
    if (de(xr, v) != de(xr, vm)) {
      step6(f, vm, vbar, i + 1)
    } else if (de(xs, v) > de(xs, vm)) {
      step5(f, v, vbar, i + 1) # v_m <- v*
    } else {
      step5(f, vm, vbar, i + 1)
    }
  }

  # Step 6: treatment of the point (e, t_m).
  step6 <- function(f, vm, vbar, i) {
    tm <- intersect(f['e'], vm, vbar)

    if (is.na(tm)) {
      step7(f, vm, vbar, i)
    } else {
      xt <- c(f['e'], 't' = tm)
      ft <- c(xt, 'r' = de(xt, vm))
      if (ft['r'] < f['r']) {
        step7(ft, vm, vbar, i)
      } else {
        step7(f, vm, vbar, i)
      }
    }
  }

  # Step 7: proceed to the next vertex.
  step7 <- function(f, vm, vbar, i) {
    xs <- c(f['e'], 't' = l(f['e']))
    if (de(xs, vm) > de(xs, vbar)) {
      vbar <- vm
    }

    if (i == nrow(d)) {
      step8(f, vbar)
    } else {
      step5(f, L[vr(f['e']), i, drop=TRUE], vbar, i)
    }
  }

  step8 <- function(f, vbar) {
    vn <- L[vr(f['e']), nrow(d), drop=TRUE]
    tm <- intersect(f['e'], vn, vbar)

    if (is.na(tm)) {
      f
    } else {
      xt <- c(f['e'], 't'=tm)
      ft <- c(xt, 'r' = de(xt, vn))
      if (ft['r'] < f['r']) {
        ft
      } else {
        f
      }
    }
  }

  step1()
}

Try the gemtc package in your browser

Any scripts or data that you put into this service are public.

gemtc documentation built on July 9, 2023, 5:33 p.m.