Nothing
# Returns a matrix with one row for each of the given pairs,
# and columns 'mean' and 'sd' describing their relative effect
rel.mle.ab <- function(data, model, pairs) {
matrix(sapply(1:nrow(pairs), function(i) {
sel1 <- data[['treatment']] == pairs[['t1']][i]
sel2 <- data[['treatment']] == pairs[['t2']][i]
columns <- ll.call("required.columns.ab", model)
ll.call("mtc.rel.mle", model, as.matrix(data[sel1 | sel2, columns, drop=FALSE]))
}), ncol=2, byrow=TRUE, dimnames=list(NULL, c('mean', 'sd')))
}
# Returns a matrix with one row for each of the given pairs,
# and columns 'mean' and 'sd' describing their relative effect
rel.mle.re <- function(data, pairs) {
# the mean vector
mu <- data[['diff']]
mu[1] <- 0.0 # the baseline relative to itself
# construct the covariance matrix
se <- data[['std.err']]
sigma <- matrix(se[1]^2, nrow=length(se), ncol=length(se))
diag(sigma) <- se^2
sigma[1,] <- 0
sigma[,1] <- 0
# construct the permutation matrix
b <- sapply(1:nrow(pairs), function(i) {
x <- rep(0, length(se))
x[data[['treatment']] == pairs[['t1']][i]] <- -1
x[data[['treatment']] == pairs[['t2']][i]] <- 1
x
})
b <- matrix(b, nrow=length(se))
mu <- t(b) %*% mu
sigma <- t(b) %*% sigma %*% b
rval <- cbind(mu, sqrt(diag(sigma)))
colnames(rval) <- c('mean', 'sd')
rval
}
# Guess the measurement scale based on differences observed in the data set
guess.scale <- function(model) {
data.ab <- model[['network']][['data.ab']]
max.ab <- 0
if (!is.null(data.ab)) {
max.ab <- max(sapply(unique(data.ab[['study']]), function(study) {
pairs <- mtc.treatment.pairs(mtc.study.design(model[['network']], study))
max(abs(rel.mle.ab(data.ab[data.ab[['study']] == study, , drop=TRUE], model, pairs)[,'mean']))
}))
}
data.re <- model[['network']][['data.re']]
max.re <- 0
if (!is.null(data.re)) {
max.re <- max(sapply(unique(data.re[['study']]), function(study) {
pairs <- mtc.treatment.pairs(mtc.study.design(model[['network']], study))
max(abs(rel.mle.re(data.re[data.re[['study']] == study, , drop=TRUE], pairs)[,'mean']))
}))
}
max(max.ab, max.re)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.