tests/testthat/test-unit-mtc.model_data.R

context("mtc.model.data");

test_that("mtc.model.data runs on simple data", {
  data <- read.table(textConnection('
study treatment responders sampleSize
1     A         3          10
1     B         4          12'), header=T, stringsAsFactors=T)
  network <- mtc.network(data)
  model <- list(network=network, likelihood='binom', link='logit', om.scale=2.5)
  model <- mtc.model.data(model)
  expect_that(model$r, equals(t(c(3, 4))))
  expect_that(model$n, equals(t(c(10, 12))))
  expect_that(model$t, equals(t(as.numeric(network$data$treatment))))
})

test_that("mtc.model.data complains about NAs in data.ab", {
  data <- read.table(textConnection('
study treatment responders sampleSize
1     A         3          10
1     B         NA         12'), header=T)
  network <- mtc.network(data)
  model <- list(network=network, likelihood='binom', link='logit', om.scale=2.5)
  expect_error(mtc.model.data(model), 'data.ab contains NAs in column "responders"')

  data <- read.table(textConnection('
study treatment responders sampleSize
1     A         3          10
1     B         4          NA'), header=T)
  network <- mtc.network(data)
  model <- list(network=network, likelihood='binom', link='logit', om.scale=2.5)
  expect_error(mtc.model.data(model), 'data.ab contains NAs in column "sampleSize"')
})

test_that("mtc.model.data includes correct fields for data.ab, binom.logit", {
  data.ab <- read.table(textConnection('
study treatment responders sampleSize exposure
1     A         3          10         20
1     B         4          12         24'), header=T)
  network <- mtc.network(data.ab)
  model <- list(network=network, likelihood='binom', link='logit', om.scale=2.5)
  data <- mtc.model.data(model)
  expect_that(sort(names(data)), equals(
    sort(c('studies.a', 'studies', 'nt', 'om.scale', 're.prior.sd', 'na', 't', 'r', 'n'))
  ))
})

test_that("mtc.model.data includes correct fields for data.ab, binom.cloglog", {
  data.ab <- read.table(textConnection('
study treatment responders sampleSize exposure
1     A         3          10         20
1     B         4          12         24'), header=T)
  network <- mtc.network(data.ab)
  model <- list(network=network, likelihood='binom', link='cloglog', om.scale=2.5)
  data <- mtc.model.data(model)
  expect_that(sort(names(data)), equals(
    sort(c(
      'studies.a', 'studies', 'nt', 'om.scale', 're.prior.sd', 'na', 't', 'r', 'n'))
  ))
})

test_that("mtc.model.data includes correct fields for data.ab, poisson.log", {
  data.ab <- read.table(textConnection('
study treatment responders sampleSize exposure
1     A         3          10         20
1     B         4          12         24'), header=T)
  network <- mtc.network(data.ab)
  model <- list(network=network, likelihood='poisson', link='log', om.scale=2.5)
  data <- mtc.model.data(model)
  expect_that(sort(names(data)), equals(
    sort(c(
      'studies.a', 'studies', 'nt', 'om.scale', 're.prior.sd', 'na', 't', 'r', 'E'))
  ))
})

test_that("mtc.model.data includes correct fields for data.ab, normal.identity", {
  data.ab <- read.table(textConnection('
study treatment mean std.err
1     A         3.4  0.21
1     B         4.0  0.19'), header=T)
  network <- mtc.network(data.ab)
  model <- list(network=network, likelihood='normal', link='identity', om.scale=2.5)
  data <- mtc.model.data(model)
  expect_that(sort(names(data)), equals(
    sort(c(
      'studies.a', 'studies', 'nt', 'om.scale', 're.prior.sd', 'na', 't', 'm', 'e'))
  ))
})

test_that("mtc.model.data includes correct fields for data.re", {
  data.re <- read.table(textConnection('
study treatment diff std.err
1     A         NA   0.21
1     B         4.0  0.19'), header=T)
  network <- mtc.network(data.re=data.re)
  model <- list(network=network, likelihood='normal', link='identity', om.scale=2.5)
  data <- mtc.model.data(model)
  expect_that(sort(names(data)), equals(
    sort(c(
      'studies.r2', 'studies', 'nt', 'om.scale', 're.prior.sd', 'na', 't', 'm', 'e'))
  ))
})

test_that("mtc.model.data includes correct fields for data.ab, normal.identity + data.re", {
  data.ab <- read.table(textConnection('
study treatment mean std.err
1     A         3.4  0.21
1     B         4.0  0.19'), header=T)
  data.re <- read.table(textConnection('
study treatment diff std.err
2     A         NA   0.21
2     B         4.0  0.19'), header=T)
  network <- mtc.network(data.ab, data.re=data.re)
  model <- list(network=network, likelihood='normal', link='identity', om.scale=2.5)
  data <- mtc.model.data(model)
  expect_that(sort(names(data)), equals(
    sort(c(
      'studies.a', 'studies.r2', 'studies', 'nt', 'om.scale', 're.prior.sd', 'na', 't', 'm', 'e'))
  ))
})

test_that("mtc.model.data includes correct fields for data.ab, binom.logit + data.re", {
  data.ab <- read.table(textConnection('
study treatment responders sampleSize
1     A         3          10
1     B         4          12'), header=T)
  data.re <- read.table(textConnection('
study treatment diff std.err
2     A         NA   0.19
2     B         4.0  0.21
2     C         2.5  0.22'), header=T)
  network <- mtc.network(data.ab, data.re=data.re)
  model <- list(network=network, likelihood='binom', link='logit', om.scale=2.5)
  data <- mtc.model.data(model)
  expect_that(sort(names(data)), equals(
    sort(c(
      'studies.a', 'studies.rm', 'studies', 'nt', 'om.scale', 're.prior.sd', 'na', 't', 'r', 'n', 'm', 'e'))
  ))
})

test_that("mtc.model.data omits studies with alpha=0 (powerAdjust)", {
  data.ab <- read.table(textConnection('
study treatment responders sampleSize
1     A         3          10
1     B         4          12
1     C         8          20
1     D         7          21
2     B         3          11
2     C         5          13'), header=T)
  data.re <- read.table(textConnection('
study treatment diff std.err
3     A         NA   0.21
3     B         4.0  0.19'), header=T)
  studies <- data.frame('study'=c('1','2','3'), 'x'=c(1,0,0), stringsAsFactors=FALSE)
  network <- mtc.network(data.ab, data.re=data.re, studies=studies)
  model <- list(network=network, likelihood='binom', link='logit', om.scale=2.5, powerAdjust='x')
  data <- mtc.model.data(model)
  expect_equal(data[['studies.a']], 1)
  expect_equal(data[['studies.r2']], NULL)
  expect_equal(data[['studies.rm']], NULL)
  expect_equal(data[['studies']], 1)
})

test_that("mtc.model.data has correct values (1)", {
  data.ab <- read.table(textConnection('
study treatment responders sampleSize
1     A         3          10
1     B         4          12
1     C         8          20
1     D         7          21
2     B         3          11
2     C         5          13'), header=T)
  data.re <- read.table(textConnection('
study treatment diff std.err
3     A         NA   0.21
3     B         4.0  0.19'), header=T)
  network <- mtc.network(data.ab, data.re=data.re)
  model <- list(network=network, likelihood='binom', link='logit', om.scale=2.5)
  data <- mtc.model.data(model)
  expect_equal(data[['om.scale']], model$om.scale)
  expect_equal(data[['studies.a']], 1:2)
  expect_equal(data[['studies.r2']], 3:3)
  expect_equal(data[['studies.rm']], NULL)
  expect_equal(data[['studies']], 1:3)
  expect_equal(data[['nt']], 4)
  expect_equal(data[['na']], c(4,2,2))
  expect_that(data[['t']], equals(rbind(
    c(  1,  2,  3,  4),
    c(  2,  3, NA, NA),
    c(  1,  2, NA, NA)
  )))
  expect_that(data[['r']], equals(rbind(
    c(  3,  4,  8,  7),
    c(  3,  5, NA, NA),
    c( NA, NA, NA, NA)
  )))
  expect_that(data[['n']], equals(rbind(
    c( 10, 12, 20, 21),
    c( 11, 13, NA, NA),
    c( NA, NA, NA, NA)
  )))
  expect_that(data[['m']], equals(rbind(
    c( NA,  NA, NA, NA),
    c( NA,  NA, NA, NA),
    c( NA, 4.0, NA, NA)
  )))
  expect_that(data[['e']], equals(rbind(
    c(   NA,   NA, NA, NA),
    c(   NA,   NA, NA, NA),
    c( 0.21, 0.19, NA, NA)
  )))
})

test_that("mtc.model.data has correct values (2)", {
  data.ab <- read.table(textConnection('
study treatment mean std.err
1     A         10.5 0.18
1     B         15.3 0.17
2     B         15.7 0.12
2     C         18.3 0.15
3     B         13.1 0.19
3     C         14.2 0.20'), header=T)
  data.re <- read.table(textConnection('
study treatment diff std.err
4     A         NA   0.15
4     B         3.1  0.22
4     C         4.2  0.24
5     A         2.9  0.28
5     B         NA   NA
6     A         0.2  0.23
6     B         0.8  0.27
6     C         NA   0.16
7     A         NA   0.18
7     B         4.3  0.21
8     B         NA   NA
8     C         4.0  0.19'), header=T)
  network <- mtc.network(data.ab, data.re=data.re)
  model <- list(network=network, likelihood='normal', link='identity', om.scale=2.5)
  data <- mtc.model.data(model)
  expect_equal(data[['om.scale']], model$om.scale)
  expect_equal(data[['studies.a']], 1:3)
  expect_equal(data[['studies.r2']], 4:6)
  expect_equal(data[['studies.rm']], 7:8)
  expect_equal(data[['studies']], 1:8)
  expect_equal(data[['nt']], 3)
  expect_equal(data[['na']], c(2,2,2,2,2,2,3,3))
  expect_that(data[['t']], equals(rbind(
    c(  1,  2, NA), # 1
    c(  2,  3, NA), # 2
    c(  2,  3, NA), # 3
    c(  2,  1, NA), # 5
    c(  1,  2, NA), # 7
    c(  2,  3, NA), # 8
    c(  1,  2,  3), # 4
    c(  3,  1,  2)  # 6
  )))
  expect_that(data[['m']], equals(rbind(
    c( 10.5, 15.3,   NA), # 1
    c( 15.7, 18.3,   NA), # 2
    c( 13.1, 14.2,   NA), # 3
    c(   NA,  2.9,   NA), # 5
    c(   NA,  4.3,   NA), # 7
    c(   NA,  4.0,   NA), # 8
    c(   NA,  3.1,  4.2), # 4
    c(   NA,  0.2,  0.8)  # 6
  )))
  expect_that(data[['e']], equals(rbind(
    c( 0.18, 0.17,   NA), # 1
    c( 0.12, 0.15,   NA), # 2
    c( 0.19, 0.20,   NA), # 3
    c(   NA, 0.28,   NA), # 5
    c( 0.18, 0.21,   NA), # 7
    c(   NA, 0.19,   NA), # 8
    c( 0.15, 0.22, 0.24), # 4
    c( 0.16, 0.23, 0.27)  # 6
  )))
})

test_that("not specifying likelihood / link generates warnings", {
  data.re <- read.table(textConnection("
  study  treatment  diff  std.err
  s01    A          NA    NA
  s01    C          -0.31 0.67
  s02    A          NA    NA
  s02    B          -1.7  0.38
  s03    C          NA    NA
  s03    D          -0.35 0.44
  s04    C          NA    NA
  s04    D          0.55  0.55
  s05    D          NA    NA
  s05    E          -0.3  0.27
  s06    D          NA    NA
  s06    E          -0.3  0.32
  s07    A          NA    0.50
  s07    B          -2.3  0.72
  s07    D          -0.9  0.69"), header=T)

  network <- mtc.network(data.re=data.re)

  expect_warning(model <- mtc.model(network, likelihood='normal'), 'Link can not be inferred. Defaulting to identity.')
  expect_that(model$link, equals('identity'))
  expect_warning(model <- mtc.model(network, link='identity'), 'Likelihood can not be inferred. Defaulting to normal.')
  expect_that(model$likelihood, equals('normal'))

  expect_error(mtc.model(network, link='logit', likelihood='normal'))
})

Try the gemtc package in your browser

Any scripts or data that you put into this service are public.

gemtc documentation built on July 9, 2023, 5:33 p.m.