avgrocs | R Documentation |
Takes the vertical average of ROC curves using algorithm 3 from \insertCitefaw06;textualgenscore. The resulting ROC curve preserves the average AUC.
avgrocs(rocs, num_true_edges, p)
rocs |
A list of ROC curves, each of which is a matrix with two columns corresponding to the true positive and false positive rates, respectively. |
num_true_edges |
A positive integer, the number of true edges |
p |
A positive integer, the dimension |
The averaged ROC curve, a matrix with 2 columns and (p^2-p-num_true_edges+1)
rows.
faw06genscore
n <- 40
p <- 50
mu <- rep(0, p)
tol <- 1e-8
domain <- make_domain("R+", p=p)
K <- cov_cons(mode="sub", p=p, seed=1, spars=0.2, eig=0.1, subgraphs=10)
true_edges <- which(abs(K) > tol & diag(p) == 0)
dm <- 1 + (1-1/(1+4*exp(1)*max(6*log(p)/n, sqrt(6*log(p)/n))))
ROCs <- list()
old.par <- par(mfrow=c(2,2), mar=c(5,5,5,5))
for (i in 1:3){
set.seed(i)
x <- tmvtnorm::rtmvnorm(n, mean = mu, sigma = solve(K),
lower = rep(0, p), upper = rep(Inf, p), algorithm = "gibbs",
burn.in.samples = 100, thinning = 10)
est <- estimate(x, setting="gaussian", elts=NULL, domain=domain, centered=TRUE,
symmetric="symmetric", lambda_length=100, mode="min_pow",
param1=1, param2=3, diag=dm)
# Apply tp_fp to each estimated edges set for each lambda
TP_FP <- t(sapply(est$edgess, function(edges){tp_fp(edges, true_edges, p)}))
ROCs[[i]] <- TP_FP
plot(c(), c(), ylim=c(0,1), xlim=c(0,1), cex.lab=1,
main=paste("ROC, trial ",i,", AUC ",round(AUC(TP_FP),4),sep=""),
xlab="False Positives", ylab="True Positives")
points(TP_FP[,2], TP_FP[,1], type="l")
points(c(0,1), c(0,1), type = "l", lty = 2)
}
average_ROC <- avgrocs(ROCs, length(true_edges), p)
plot(c(), c(), ylim=c(0,1), xlim=c(0,1), cex.lab=1,
main=paste("Average ROC, AUC",round(AUC(average_ROC),4)),
xlab="False Positives", ylab="True Positives")
points(average_ROC[,2], average_ROC[,1], type="l")
points(c(0,1), c(0,1), type = "l", lty = 2)
par(old.par)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.