get_elts_gauss: The R implementation to get the elements necessary for...

Description Usage Arguments Details Value Examples

View source: R/genscore.R

Description

The R implementation to get the elements necessary for calculations for the gaussian setting on R^p.

Usage

1
2
3
4
5
6
7
get_elts_gauss(
  x,
  centered = TRUE,
  profiled_if_noncenter = TRUE,
  scale = "",
  diagonal_multiplier = 1
)

Arguments

x

An n by p matrix, the data matrix, where n is the sample size and p the dimension.

centered

A boolean, whether in the centered setting (assume μ=η=0) or not. Default to TRUE.

profiled_if_noncenter

A boolean, whether in the profiled setting (λ_η=0) if non-centered. Parameter ignored if centered==TRUE. Default to TRUE.

scale

A string indicating the scaling method. Returned without being checked or used in the function body. Default to "norm".

diagonal_multiplier

A number >= 1, the diagonal multiplier.

Details

For details on the returned values, please refer to get_elts_ab or get_elts.

Value

A list that contains the elements necessary for estimation.

n

The sample size.

p

The dimension.

centered

The centered setting or not. Same as input.

scale

The scaling method. Same as input.

diagonal_multiplier

The diagonal multiplier. Same as input.

diagonals_with_multiplier

A vector that contains the diagonal entries of Γ after applying the multiplier.

setting

The setting "gaussian".

Gamma_K

The Γ matrix with no diagonal multiplier. In the non-profiled non-centered setting, this is the Γ sub-matrix corresponding to K. Except for the profiled setting, this is xx'/n.

Gamma_K_eta

Returned in the non-profiled non-centered setting. The Γ sub-matrix corresponding to interaction between K and η. The minus column means of x.

t1,t2

Returned in the profiled non-centered setting, where theη estimate can be retrieved from t1-t2*\hat{K} after appropriate resizing.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
n <- 50
p <- 30
mu <- rep(0, p)
K <- diag(p)
x <- mvtnorm::rmvnorm(n, mean=mu, sigma=solve(K))
# Equivalently:

x2 <- gen(n, setting="gaussian", abs=FALSE, eta=c(K%*%mu), K=K, domain=make_domain("R",p),
       finite_infinity=100, xinit=NULL, burn_in=1000, thinning=100, verbose=FALSE)

elts <- get_elts_gauss(x, centered=TRUE, scale="norm", diag=1.5)
elts <- get_elts_gauss(x, centered=FALSE, profiled=FALSE, scale="sd", diag=1.9)

genscore documentation built on April 28, 2020, 1:06 a.m.