get_dist: Finds the distance of each element in a matrix x to the its...

Description Usage Arguments Details Value Examples

View source: R/genscore.R

Description

Finds the distance of each element in a matrix x to its boundary of the domain while fixing the others in the same row.

Usage

1
get_dist(x, domain)

Arguments

x

An n by p matrix, the data matrix, where n is the sample size and p the dimension.

domain

A list returned from make_domain() that represents the domain.

Details

Returned matrix dx has its i,j-th component the distance of x_{i,j} to the boundary of domain, assuming x_{i,-j} are fixed. The matrix has the same size of x (n by p), or if domain$type == "simplex" and x has full dimension p, it has p-1 columns. Returned matrix dpx contains the component-wise derivatives of dx in its components. That is, its i,j-th component is 0 if x_{i,j} is unbounded or is bounded from both below and above or is at the boundary, or -1 if x_{i,j} is closer to its lower boundary (or if its bounded from below but unbounded from above), or 1 otherwise.

Value

A list that contains h(dist(x, domain)) and h\'(dist(x, domain)).

dx

Coordinate-wise distance to the boundary.

dpx

Coordinate-wise derivative of dx.

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
n <- 20
p <- 10
eta <- rep(0, p)
K <- diag(p)
dm <- 1 + (1-1/(1+4*exp(1)*max(6*log(p)/n, sqrt(6*log(p)/n))))

# Gaussian on R^p:
domain <- make_domain("R", p=p)
x <- mvtnorm::rmvnorm(n, mean=solve(K, eta), sigma=solve(K))
# Equivalently:

x2 <- gen(n, setting="gaussian", abs=FALSE, eta=eta, K=K, domain=domain, finite_infinity=100, 
        xinit=NULL, burn_in=1000, thinning=100, verbose=FALSE)

dist <- get_dist(x, domain)
# dx is all Inf and dpx is all 0 since each coordinate is unbounded with domain R
c(all(is.infinite(dist$dx)), all(dist$dpx==0))

# exp on R_+^p:
domain <- make_domain("R+", p=p)
x <- gen(n, setting="exp", abs=FALSE, eta=eta, K=K, domain=domain, finite_infinity=100, 
       xinit=NULL, seed=2, burn_in=1000, thinning=100, verbose=FALSE)
dist <- get_dist(x, domain)
# dx is x and dpx is 1; with domain R+, the distance of x to the boundary is just x itself
c(max(abs(dist$dx - x))<.Machine$double.eps^0.5, all(dist$dpx == 1))

# Gaussian on sum(x^2) > p with x allowed to be negative
domain <- make_domain("polynomial", p=p,
       ineqs=list(list("expression"=paste("sum(x^2)>", p), abs=FALSE, nonnegative=FALSE)))
x <- gen(n, setting="gaussian", abs=FALSE, eta=eta, K=K, domain=domain, finite_infinity=100, 
       xinit=NULL, seed=2, burn_in=1000, thinning=100, verbose=FALSE)
dist <- get_dist(x, domain)
quota <- p - (rowSums(x^2) - x^2) # How much should xij^2 at least be so that sum(xi^2) > p?
# How far is xij from +/-sqrt(quota), if quota >= 0?
dist_to_bound <- abs(x[quota >= 0]) - abs(sqrt(quota[quota >= 0]))
max(abs(dist$dx[is.finite(dist$dx)] - dist_to_bound)) # Should be equal to our own calculations
# dist'(x) should be the same as the sign of x
all(dist$dpx[is.finite(dist$dx)] == sign(x[quota >= 0]))
# quota is negative <-> sum of x_{i,-j}^2 already > p <-> xij unbounded
#   given others <-> distance to boundary is Inf
all(quota[is.infinite(dist$dx)] < 0)

# gamma on ([0, 1] v [2,3])^p
domain <- make_domain("uniform", p=p, lefts=c(0,2), rights=c(1,3))
x <- gen(n, setting="gamma", abs=FALSE, eta=eta, K=K, domain=domain,
       xinit=NULL, seed=2, burn_in=1000, thinning=100, verbose=FALSE)
dist <- get_dist(x, domain)
# If 0 <= xij <= 1, distance to boundary is min(x-0, 1-x)
max(abs(dist$dx - pmin(x, 1-x))[x >= 0 & x <= 1])
# If 0 <= xij <= 1, dist'(xij) is 1 if it is closer to 0, or -1 if it is closer 1,
#   assuming xij %in% c(0, 0.5, 1) with probability 0
all((dist$dpx == 2 * (1-x > x) - 1)[x >= 0 & x <= 1])
# If 2 <= xij <= 3, distance to boundary is min(x-2, 3-x)
max(abs(dist$dx - pmin(x-2, 3-x))[x >= 2 & x <= 3])
# If 2 <= xij <= 3, dist'(xij) is 1 if it is closer to 2, or -1 if it is closer 3,
#   assuming xij %in% c(2, 2.5, 3) with probability 0
all((dist$dpx == 2 * (3-x > x-2) - 1)[x >= 2 & x <= 3])

# a0.6_b0.7 on {x1 > 1 && 0 < x2 < 1 && x3 > 0 && ... && xp > 0}
domain <- make_domain("polynomial", p=p, rule="1 && 2 && 3",
       ineqs=list(list("expression"="x1>1", abs=FALSE, nonnegative=TRUE),
                      list("expression"="x2<1", abs=FALSE, nonnegative=TRUE),
                      list("expression"="exp(x)>1.3", abs=FALSE, nonnegative=FALSE)))
set.seed(1)
xinit <- c(1.5, 0.5, abs(stats::rnorm(p-2)) + log(1.3))
x <- gen(n, setting="ab_3/5_7/10", abs=FALSE, eta=eta, K=K, domain=domain,
       finite_infinity=100, xinit=xinit, seed=2, burn_in=1000, thinning=100,
       verbose=FALSE)
dist <- get_dist(x, domain)
# x_{i1} has uniform bound [1, +Inf), so its distance to its boundary is x_{i1} - 1
max(abs(dist$dx[,1] - (x[,1] - 1)))
# x_{i2} has uniform bound [log(1.3), 1], so its distance to its boundary
#   is min(x_{i2} - log(1.3), 1 - x_{i2})
max(abs(dist$dx[,2] - pmin(x[,2] - log(1.3), 1 - x[,2])))
# x_{ij} for j >= 3 has uniform bound [log(1.3), +Inf), so its distance to its boundary
#   is simply x_{ij} - log(1.3)
max(abs(dist$dx[,3:p] - (x[,3:p] - log(1.3))))
# dist\'(xi2) is 1 if it is closer to log(1.3), or -1 if it is closer 1,
#   assuming x_{i2} %in% c(log(1.3), (1+log(1.3))/2, 1) with probability 0
all((dist$dpx[,2] == 2 * (1 - x[,2] > x[,2] - log(1.3)) - 1))
# x_{ij} for j != 2 is bounded from below but unbounded from above, so dist\'(xij) is always 1
all(dist$dpx[,-2] == 1)

# log_log model on {x in R_+^p: sum_j j * xj <= 1}
domain <- make_domain("polynomial", p=p,
       ineqs=list(list("expression"=paste(paste(sapply(1:p,
                           function(j){paste(j, "x", j, sep="")}), collapse="+"), "<1"),
                     abs=FALSE, nonnegative=TRUE)))
x <- gen(n, setting="log_log", abs=FALSE, eta=eta, K=K, domain=domain, finite_infinity=100, 
       xinit=NULL, seed=2, burn_in=1000, thinning=100, verbose=FALSE)
dist <- get_dist(x, domain)
# Upper bound for j * xij so that sum_j j * xij <= 1
quota <- 1 - (rowSums(t(t(x) * 1:p)) - t(t(x) * 1:p))
# Distance of xij to its boundary is min(xij - 0, quota_{i,j} / j - xij)
max(abs(dist$dx - pmin((t(t(quota) / 1:p) - x), x)))

# log_log model on the simplex with K having row and column sums 0 (Aitchison model)
domain <- make_domain("simplex", p=p)
K <- -cov_cons("band", p=p, spars=3, eig=1)
diag(K) <- diag(K) - rowSums(K) # So that rowSums(K) == colSums(K) == 0
eigen(K)$val[(p-1):p] # Make sure K has one 0 and p-1 positive eigenvalues
x <- gen(n, setting="log_log_sum0", abs=FALSE, eta=eta, K=K, domain=domain,
        xinit=NULL, seed=2, burn_in=1000, thinning=100, verbose=FALSE)
# Note that dist$dx and dist$dpx only has p-1 columns -- excluding the last coordinate in x
dist <- get_dist(x, domain)
# Upper bound for x_{i,j} so that x_{i,1} + ... + x_{i,p-1} <= 1
quota <- 1 - (rowSums(x[,-p]) - x[,-p])
# Distance of x_{i,j} to its boundary is min(xij - 0, quota_{i,j} - xij)
max(abs(dist$dx - pmin(quota - x[,-p], x[,-p])))

genscore documentation built on April 28, 2020, 1:06 a.m.