Description Usage Arguments Details Value Author(s) See Also Examples
This function sets up the parameters and initial values used for the MCMC algorithms.
1 2 3 4 5 6 7  | 
run | 
 the number of iterations  | 
run.S | 
 the number of internal iterations for latent variables  | 
rho.family | 
 take the value of   | 
Y.family | 
 take the value of   | 
priorSigma | 
 the prior distribution for σ, the options include "Halft" (positive-truncated t distribution), "InvGamma" (inverse gamma distribution), and "Reciprocal" (reciprocal distribution)  | 
parSigma | 
 the parameters for the prior distribution of σ: when priorSigma = "Halft" the first parameter is scale and the second is degree of freedom; when priorSigma = "InvGamma" the first parameter is shape and the second is scale; when priorSigma = "Reciprocal" both parameters are ignored  | 
ifkappa | 
 take zero or non-zero value which indicates whether κ should be sampled  | 
scales | 
 a vector which indicates the tuning parameters for (S, β, σ,φ,κ) respectively  | 
phi.bound | 
 the upper and lower bound for φ  | 
initials | 
 a list which indicates the initial values for (β, σ,φ,κ) respectively  | 
During each iteration of Gibbs sampling process, the group of latent variables is updated "run.S" times to improve accuracy and reduce autocorrelations.
A list of setting parameters.
Liang Jing ljing918@gmail.com
1 2 3 4 5 6 7 8 9 10 11 12  | ## Not run: 
  input <- MCMCinput( run = 10000, run.S = 10, 
          rho.family = "rhoPowerExp", 
          Y.family = "Poisson", 
          priorSigma = "Halft", parSigma = c(1, 1),
          ifkappa=0,
          scales=c(0.5, 1.5, 0.9, 0.6, 0.5), 
          phi.bound=c(0.005, 1), 
          initials=list(c(-1, 2, 1), 1, 0.1, 1) )
  res <- runMCMC(Y, L=0, loc=loc, X=loc, MCMCinput = input )
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.