Nothing
data <- gfoRmulaICE::compData
set.seed(1)
test_that(
"check pooled ICE inputs",
{
expect_error(ice(data = data, time_points = 4, id = "i",
time_name = "t0", outcome_name = "Y",
censor_name = NULL, compevent_name = "D",
estimator = pool(hazard = F),
comp_effect = 1,
outcome_model = Y ~ L1 + A2,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
expect_error(ice(data = data, time_points = 4, id = "id",
time_name = "t", outcome_name = "Y",
censor_name = NULL, compevent_name = "D",
estimator = pool(hazard = F),
comp_effect = 1,
outcome_model = Y ~ L1 + A2,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
expect_error(ice(data = data, time_points = 4, id = "id",
time_name = "t0",
censor_name = NULL, compevent_name = "d",
estimator = pool(hazard = F),
comp_effect = 1,
outcome_model = Y ~ L1 + A2,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention_1.2 = list(static(1)),
intervention_2.2 = list(static(0))))
expect_error(ice(data = data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = "c", compevent_name = "D",
estimator = pool(hazard = F),
comp_effect = 1,
outcome_model = Y ~ L1 + A2,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
expect_error(ice(data = data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = NULL, compevent_name = "D",
estimator = pool(hazard = F),
comp_effect = 0,
outcome_model = Y ~ L1 + A2,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention_1.A2 = list(static(1)),
intervention_2.A2 = list(static(0))))
expect_error(ice(data = data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = "C", compevent_name = "D",
estimator = pool(hazard = F),
comp_effect = 1,
outcome_model = Y ~ L1 + A2,
censor_model = NULL,
competing_model = D ~ L1 + A2,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
expect_error(ice(data = data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = NULL, compevent_name = "D",
estimator = pool(hazard = T),
comp_effect = 0,
outcome_model = Y ~ L1 + A2,
competing_model = NULL,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
expect_error(ice(data = data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = NULL, compevent_name = "D",
estimator = pool(hazard = F),
comp_effect = 2,
outcome_model = Y ~ L1,
competing_model = D ~ L1 + A2,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
expect_error(ice(data = test_data, time_points = 5, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = NULL, compevent_name = "D",
estimator = pool(hazard = T),
comp_effect = 2,
outcome_model = Y ~ L1 + A2,
competing_model = D ~ L1,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
})
test_that(
"check stratified ICE inputs",
{
expect_error(ice(data = data, time_points = 4, id = "i",
time_name = "t0", outcome_name = "Y",
censor_name = NULL, compevent_name = "D",
estimator = strat(hazard = F),
comp_effect = 2,
outcome_model = Y ~ L1,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
expect_error(ice(data = data, time_points = 4, id = "id",
time_name = "t", outcome_name = "Y",
censor_name = NULL, compevent_name = "D",
estimator = strat(hazard = F),
comp_effect = 2,
outcome_model = Y ~ L1,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
expect_error(ice(data = data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = NULL, compevent_name = "d",
estimator = strat(hazard = F),
comp_effect = 2,
outcome_model = Y ~ L1,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
expect_error(ice(data = data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = "c", compevent_name = "D",
estimator = strat(hazard = F),
comp_effect = 2,
outcome_model = Y ~ L1,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
expect_error(ice(data = data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = NULL, compevent_name = "D",
estimator = strat(hazard = F),
comp_effect = 2,
outcome_model = Y ~ L1,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.a2 = list(static(1)),
intervention2.a2 = list(static(0))))
expect_error(ice(data = data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = "C", compevent_name = "D",
estimator = pool(hazard = F),
comp_effect = 2,
outcome_model = Y ~ L1,
censor_model = NULL,
competing_model = D ~ L1,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
expect_error(ice(data = data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = NULL, compevent_name = "D",
estimator = strat(hazard = T),
comp_effect = 2,
outcome_model = Y ~ L1,
competing_model = NULL,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
expect_error(ice(data = data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = NULL, compevent_name = "D",
estimator = strat(hazard = T),
comp_effect = 2,
outcome_model = Y ~ L1,
competing_model = D ~ L1 + A,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
})
test_that(
"check weighted ICE inputs",
{
expect_error(ice(data = data, time_points = 4, id = "i",
time_name = "t0", outcome_name = "Y",
censor_name = NULL, compevent_name = "D",
estimator = weight(list(A2 ~ L1)),
comp_effect = 2,
outcome_model = Y ~ L1,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
expect_error(ice(data = test_data, time_points = 4, id = "id",
time_name = "t", outcome_name = "Y",
censor_name = NULL, compevent_name = "D",
estimator = weight(list(A2 ~ L1)),
comp_effect = 2,
outcome_model = Y ~ L1,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
expect_error(ice(data = test_data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = NULL, compevent_name = "d",
estimator = weight(list(A2 ~ L1)),
comp_effect = 2,
outcome_model = Y ~ L1,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
expect_error(ice(data = test_data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = "c", compevent_name = "D",
estimator = weight(list(A2 ~ L1)),
comp_effect = 2,
outcome_model = Y ~ L1,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
expect_error(ice(data = test_data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = NULL, compevent_name = "D",
estimator = weight(list(A2 ~ L1)),
comp_effect = 2,
outcome_model = Y ~ L1,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.a2 = list(static(1)),
intervention2.a2 = list(static(0))))
expect_error(ice(data = test_data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = "C", compevent_name = "D",
estimator = weight(list(A2 ~ L1)),
comp_effect = 2,
outcome_model = Y ~ L1,
censor_model = NULL,
competing_model = D ~ L1,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
expect_error(ice(data = test_data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = "C", compevent_name = "D",
estimator = weight(list(A2 ~ L1)),
comp_effect = 2,
outcome_model = Y ~ L1 + A2,
censor_model = NULL,
competing_model = D ~ L1,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
expect_error(ice(data = test_data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = "C", compevent_name = "D",
estimator = weight(list('A2 ~ L1')),
comp_effect = 2,
outcome_model = Y ~ L1 + A2,
censor_model = NULL,
competing_model = D ~ L1,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
expect_error(ice(data = test_data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = "C", compevent_name = "D",
estimator = weight(list()),
comp_effect = 2,
outcome_model = Y ~ L1 + A2,
censor_model = NULL,
competing_model = D ~ L1,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
})
test_that(
"check general inputs",
{
expect_error(ice(data = data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = NULL, compevent_name = "D",
estimator = pool(hazard = T),
comp_effect = 0,
outcome_model = Y ~ L1 + A2,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
expect_error(ice(data = data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = "C", compevent_name = "D",
estimator = pool(hazard = F),
comp_effect = 0,
outcome_model = Y ~ L1 + A2,
censor_model = C ~ L1 + A2,
competing_model = D ~ L1 + A2,
ref_idx = 5,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
expect_error(ice(data = data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = "C", compevent_name = "D",
estimator = pool(hazard = F),
comp_effect = 0,
outcome_model = Y ~ L1 + A2,
censor_model = C ~ L1 + A2,
competing_model = D ~ L1 + A2,
ref_idx = -2,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
expect_error(ice(data = data, time_points = 4, id = "id",
time_names = "t0", outcome_name = "Y",
censor_name = "C", compevent_name = "D",
estimator = pool(hazard = F),
comp_effect = 0,
outcome_model = Y ~ L1 + A2,
censor_model = C ~ L1 + A2,
comp_model = D ~ L1 + A2,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
expect_error(ice(data = data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = "C", compevent_name = "D",
estimator = pool(hazard = F),
comp_effect = 0,
outcome_model = "Y ~ L1 + A2",
censor_model = C ~ L1 + A2,
competing_model = D ~ L1 + A2,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
expect_error(ice(data = data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = "C", compevent_name = "D",
estimator = pool(hazard = F),
comp_effect = 0,
outcome_model = Y ~ L1 + A2,
censor_model = "C ~ L1 + A2",
competing_model = D ~ L1 + A2,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
expect_error(ice(data = data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = "C", compevent_name = "D",
estimator = pool(hazard = F),
comp_effect = 0,
outcome_model = Y ~ L1 + A2,
censor_model = C ~ L1 + A2,
competing_model = "D ~ L1 + A2",
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
expect_error(ice(data = data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = "C", compevent_name = "D",
estimator = pooled(hazard = F),
comp_effect = 0,
outcome_model = Y ~ L1 + A2,
censor_model = C ~ L1 + A2,
competing_model = D ~ L1 + A2,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
expect_error(ice(data = data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = "C", compevent_name = "D",
estimator = stratify(hazard = F),
comp_effect = 0,
outcome_model = Y ~ L1,
censor_model = C ~ L1,
competing_model = "D ~ L1",
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
expect_error(ice(data = data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = "C", compevent_name = "D",
estimator = weighted(list(A2 ~ L1)),
comp_effect = 0,
outcome_model = Y ~ L1 + A2,
censor_model = C ~ L1 + A2,
competing_model = D ~ L1 + A2,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
# check hazard model - ignored for classical ICE
expect_warning(ice(data = data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = "C", compevent_name = "D",
estimator = pool(hazard = F),
comp_effect = 0,
outcome_model = Y ~ L1 + A2,
censor_model = C ~ L1 + A2,
competing_model = D ~ L1 + A2,
hazard_model = Y ~ L1,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
# check hazard model - global hazard model is not allowed for stratified ICE
expect_warning(ice(data = data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = "C", compevent_name = "D",
estimator = strat(hazard = T),
comp_effect = 0,
outcome_model = Y ~ L1,
censor_model = C ~ L1,
competing_model = D ~ L1,
hazard_model = Y ~ L1,
global_hazard = T,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
# test only output natural course
# expect_warning(ice(data = data, time_points = 4, id = "id",
# time_name = "t0", outcome_name = "Y",
# censor_name = "C", compevent_name = "D",
# estimator = pool(hazard = T),
# comp_effect = 0,
# outcome_model = Y ~ L1 + A2,
# censor_model = C ~ L1 + A2,
# competing_model = D ~ L1 + A2,
# ref_idx = 0,
# int_descript = c("Always Treat", "Never Treat")))
expect_warning(ice(data = data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = "C", compevent_name = "D",
estimator = strat(hazard = T),
comp_effect = 0,
outcome_model = Y ~ L1,
censor_model = C ~ L1,
competing_model = D ~ L1,
hazard_model = Y ~ L1,
global_hazard = T,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0))))
expect_warning(ice(data = data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = "C", compevent_name = "D",
estimator = strat(hazard = F),
comp_effect = 0,
outcome_model = Y ~ L1,
censor_model = C ~ L1,
competing_model = D ~ L1,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A2 = list(static(1)),
intervention2.A2 = list(static(0)),
compModel.2 = D ~ L2))
expect_warning(ice(data = data, time_points = 4, id = "id",
time_name = "t0", outcome_name = "Y",
censor_name = "C", compevent_name = "D",
estimator = strat(hazard = F),
comp_effect = 0,
outcome_model = Y ~ L1,
censor_model = C ~ L1,
competing_model = D ~ L1,
ref_idx = 0,
int_descript = c("Always Treat", "Never Treat"),
intervention1.A1 = list(static(3), 0:2),
intervention2.A2 = list(static(1))))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.