Nothing
get_predictions_lme <- function(model,
fitfram,
ci.lvl,
linv,
type,
terms,
value_adjustment,
model_class,
vcov.fun,
vcov.type,
vcov.args,
condition,
interval,
...) {
# does user want standard errors?
se <- (!is.null(ci.lvl) && !is.na(ci.lvl)) || !is.null(vcov.fun)
# compute ci, two-ways
if (!is.null(ci.lvl) && !is.na(ci.lvl))
ci <- (1 + ci.lvl) / 2
else
ci <- 0.975
# degrees of freedom
dof <- .get_df(model)
tcrit <- stats::qt(ci, df = dof)
if (inherits(model, "glmmPQL"))
pr.type <- "link"
else
pr.type <- "response"
prdat <- stats::predict(
model,
newdata = fitfram,
type = pr.type,
level = 0, # always population level, see #267
...
)
# copy predictions
fitfram$predicted <- as.vector(prdat)
# did user request standard errors? if yes, compute CI
if (se) {
se.pred <- .standard_error_predictions(
model = model,
prediction_data = fitfram,
value_adjustment = value_adjustment,
terms = terms,
model_class = model_class,
type = type,
vcov.fun = vcov.fun,
vcov.type = vcov.type,
vcov.args = vcov.args,
condition = condition,
interval = interval
)
if (.check_returned_se(se.pred)) {
se.fit <- se.pred$se.fit
fitfram <- se.pred$prediction_data
# calculate CI
fitfram$conf.low <- fitfram$predicted - tcrit * se.fit
fitfram$conf.high <- fitfram$predicted + tcrit * se.fit
# copy standard errors
attr(fitfram, "std.error") <- se.fit
attr(fitfram, "prediction.interval") <- attr(se.pred, "prediction_interval")
} else {
# No CI
fitfram$conf.low <- NA
fitfram$conf.high <- NA
}
} else {
# No CI
fitfram$conf.low <- NA
fitfram$conf.high <- NA
}
# for glmmPQL, we need to back-transform using link-inverse
if (inherits(model, "glmmPQL")) {
fitfram$predicted <- linv(fitfram$predicted)
fitfram$conf.low <- linv(fitfram$conf.low)
fitfram$conf.high <- linv(fitfram$conf.high)
}
fitfram
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.