Nothing
#' @export
get_predictions.lme <- function(model,
data_grid = NULL,
terms = NULL,
ci_level = 0.95,
type = NULL,
typical = NULL,
vcov = NULL,
vcov_args = NULL,
condition = NULL,
interval = "confidence",
bias_correction = FALSE,
link_inverse = insight::link_inverse(model),
model_info = NULL,
verbose = TRUE,
...) {
# does user want standard errors?
se <- (!is.null(ci_level) && !is.na(ci_level)) || !is.null(vcov)
# compute ci, two-ways
if (!is.null(ci_level) && !is.na(ci_level)) {
ci <- (1 + ci_level) / 2
} else {
ci <- 0.975
}
# degrees of freedom
dof <- .get_df(model)
tcrit <- stats::qt(ci, df = dof)
if (inherits(model, "glmmPQL")) {
pr.type <- "link"
} else {
pr.type <- "response"
}
prdat <- suppressWarnings(stats::predict(
model,
newdata = data_grid,
type = pr.type,
level = 0, # always population level, see #267
...
))
# copy predictions
data_grid$predicted <- as.vector(prdat)
# did user request standard errors? if yes, compute CI
if (se) {
se.pred <- .standard_error_predictions(
model = model,
prediction_data = data_grid,
typical = typical,
terms = terms,
type = type,
vcov = vcov,
vcov_args = vcov_args,
condition = condition,
interval = interval
)
if (.check_returned_se(se.pred)) {
se.fit <- se.pred$se.fit
data_grid <- se.pred$prediction_data
# calculate CI
data_grid$conf.low <- data_grid$predicted - tcrit * se.fit
data_grid$conf.high <- data_grid$predicted + tcrit * se.fit
# copy standard errors
attr(data_grid, "std.error") <- se.fit
attr(data_grid, "prediction.interval") <- attr(se.pred, "prediction_interval")
} else {
# No CI
data_grid$conf.low <- NA
data_grid$conf.high <- NA
}
} else {
# No CI
data_grid$conf.low <- NA
data_grid$conf.high <- NA
}
# for glmmPQL, we need to back-transform using link-inverse
if (inherits(model, "glmmPQL")) {
data_grid$predicted <- link_inverse(data_grid$predicted)
data_grid$conf.low <- link_inverse(data_grid$conf.low)
data_grid$conf.high <- link_inverse(data_grid$conf.high)
}
data_grid
}
#' @export
get_predictions.gls <- get_predictions.lme
#' @export
get_predictions.glmmPQL <- get_predictions.lme
#' @export
get_predictions.plm <- get_predictions.lme
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.