Nothing
#' @export
get_predictions.lrm <- function(model,
data_grid = NULL,
terms = NULL,
ci_level = 0.95,
type = NULL,
typical = NULL,
vcov = NULL,
vcov_args = NULL,
condition = NULL,
interval = "confidence",
bias_correction = FALSE,
link_inverse = insight::link_inverse(model),
model_info = NULL,
verbose = TRUE,
...) {
# does user want standard errors?
se <- !is.null(ci_level) && !is.na(ci_level)
# compute ci, two-ways
if (!is.null(ci_level) && !is.na(ci_level)) {
ci <- (1 + ci_level) / 2
} else {
ci <- 0.975
}
# degrees of freedom
dof <- .get_df(model)
tcrit <- stats::qt(ci, df = dof)
# for ordinal models, we need special handling
if (isTRUE(model_info$is_ordinal)) {
prdat <- stats::predict(
model,
newdata = data_grid,
type = "fitted.ind",
se.fit = FALSE,
...
)
# bind predictions to model frame
data_grid <- cbind(prdat, data_grid)
# reshape
data_grid <- .gather(
data_grid,
names_to = "response.level",
values_to = "predicted",
colnames(prdat)
)
# No CI
data_grid$conf.low <- NA
data_grid$conf.high <- NA
} else {
prdat <- stats::predict(
model,
newdata = data_grid,
type = "lp",
se.fit = se,
...
)
# copy predictions
data_grid$predicted <- stats::plogis(prdat$linear.predictors)
# did user request standard errors? if yes, compute CI
if (se) {
# calculate CI
data_grid$conf.low <- stats::plogis(prdat$linear.predictors - tcrit * prdat$se.fit)
data_grid$conf.high <- stats::plogis(prdat$linear.predictors + tcrit * prdat$se.fit)
# copy standard errors
attr(data_grid, "std.error") <- prdat$se.fit
} else {
# No CI
data_grid$conf.low <- NA
data_grid$conf.high <- NA
}
}
data_grid
}
#' @export
get_predictions.orm <- get_predictions.lrm
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.