Nothing
#' @export
get_predictions.tobit <- function(model,
data_grid = NULL,
terms = NULL,
ci_level = 0.95,
type = NULL,
typical = NULL,
vcov = NULL,
vcov_args = NULL,
condition = NULL,
interval = "confidence",
bias_correction = FALSE,
link_inverse = insight::link_inverse(model),
model_info = NULL,
verbose = TRUE,
...) {
# does user want standard errors?
se <- !is.null(ci_level) && !is.na(ci_level)
# compute ci, two-ways
if (!is.null(ci_level) && !is.na(ci_level)) {
ci <- (1 + ci_level) / 2
} else {
ci <- 0.975
}
# degrees of freedom
dof <- .get_df(model)
tcrit <- stats::qt(ci, df = dof)
# special handling for survival regression with type = "quantile"
if (is.null(type) || !type %in% c("quantile", "uquantile")) {
type <- "lp"
}
if (type == "quantile") {
link_inverse <- function(x) x
}
prdat <- stats::predict(
model,
newdata = data_grid,
type = type,
se.fit = se,
...
)
# we need to shape data into long-format when type = "quantile",
# but only when it's a matrix. Determine number of columns now
if (is.matrix(prdat) || (!is.null(prdat$fit) && is.matrix(prdat$fit))) {
if (is.null(prdat$fit)) {
n_columns <- ncol(prdat)
} else {
n_columns <- ncol(prdat$fit)
}
} else {
n_columns <- 1
}
# reshape here if we have more than one column (i.e. a matrix)
if (type %in% c("quantile", "uquantile") && n_columns > 1) {
# for type = "quantile", we get a matrix of predictions, with multiple
# columns. we now duplicate the data grid and add the different status
# options as "response" column to the data grid
out <- NULL
for (i in seq_len(n_columns)) {
data_grid$response.level <- i
out <- rbind(out, data_grid)
}
# if SE are requested, we need to gather multiple columns
if (se) {
prdat <- .multiple_gather(
as.data.frame(prdat),
names_to = "status",
values_to = c("predicted", "se"),
columns = list(seq_len(n_columns), n_columns + seq_len(n_columns))
)
prdat <- list(fit = prdat$predicted, se.fit = prdat$se)
} else {
prdat <- .gather(as.data.frame(prdat), "status", "predicted")$predicted
}
# we now have "prdat" in the same structure as for other types, so we
# can proceed as usual from here...
data_grid <- out
}
# did user request standard errors? if yes, compute CI
if (se) {
# copy predictions
data_grid$predicted <- link_inverse(prdat$fit)
# calculate CI
data_grid$conf.low <- link_inverse(prdat$fit - tcrit * prdat$se.fit)
data_grid$conf.high <- link_inverse(prdat$fit + tcrit * prdat$se.fit)
# copy standard errors
attr(data_grid, "std.error") <- prdat$se.fit
} else {
# copy predictions
data_grid$predicted <- link_inverse(as.vector(prdat))
# no CI
data_grid$conf.low <- NA
data_grid$conf.high <- NA
}
data_grid
}
#' @export
get_predictions.survreg <- get_predictions.tobit
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.