Nothing
.post_processing_predictions <- function(model,
prediction_data,
original_model_frame,
cleaned_terms,
averaged_predictions = FALSE) {
# check for correct terms specification
if (!all(cleaned_terms %in% colnames(prediction_data))) {
insight::format_error("At least one focal term specified in `terms` is no valid model term.")
}
# copy standard errors
if (.obj_has_name(prediction_data, "std.error")) {
attr(prediction_data, "std.error") <- prediction_data$std.error
} else {
prediction_data$std.error <- attr(prediction_data, "std.error")
}
# edge case: for models with inverse-link, we need to "switch" CIs
if (all(prediction_data$conf.low > prediction_data$conf.high, na.rm = TRUE)) {
tmp <- prediction_data$conf.low
prediction_data$conf.low <- prediction_data$conf.high
prediction_data$conf.high <- tmp
}
# now select only relevant variables: the predictors on the x-axis,
# the predictions and the original response vector (needed for scatter plot)
columns_to_keep <- c(cleaned_terms, "predicted", "std.error", "conf.low", "conf.high", "response.level")
result <- prediction_data[, intersect(columns_to_keep, colnames(prediction_data))]
# name and sort columns, depending on groups, facet and panel
result <- .prepare_columns(result, cleaned_terms)
# grouping variable may not be labelled
# do this here, so we convert to labelled factor later
result <- .add_labels_to_groupvariable(result, original_model_frame, cleaned_terms)
# convert grouping variable to factor, for proper legend
result <- .groupvariable_to_labelled_factor(result)
# check if we have legend labels
legend.labels <- .get_labels(result$group)
# if we had numeric variable w/o labels, these still might be numeric
# make sure we have factors here for our grouping and facet variables
if (is.numeric(result$group)) {
result$group <- as.factor(result$group)
}
# remember if x was a factor - we also need to check for factors
# that were converted on the fly inside formulas
on_the_fly_factors <- attributes(original_model_frame)$factors
if ((!is.null(on_the_fly_factors) && cleaned_terms[1] %in% on_the_fly_factors) || is.factor(result$x)) {
x.is.factor <- "1"
} else {
x.is.factor <- "0"
}
# sort values
result <- result[order(result$x, result$group), , drop = FALSE]
empty_columns <- which(colSums(is.na(result)) == nrow(result))
if (length(empty_columns)) result <- result[, -empty_columns]
if (.obj_has_name(result, "facet") && is.numeric(result$facet)) {
result$facet <- as.factor(result$facet)
attr(result, "numeric.facet") <- TRUE
}
attr(result, "legend.labels") <- legend.labels
attr(result, "x.is.factor") <- x.is.factor
attr(result, "averaged_predictions") <- averaged_predictions
attr(result, "continuous.group") <- attr(prediction_data, "continuous.group") & is.null(attr(original_model_frame[[cleaned_terms[2]]], "labels"))
result
}
# name and sort columns, depending on groups, facet and panel
.prepare_columns <- function(result, cleaned_terms) {
columns <- c("x", "predicted", "std.error", "conf.low", "conf.high", "response.level", "group", "facet", "panel")
# with or w/o grouping factor?
if (length(cleaned_terms) == 1) {
colnames(result)[1] <- "x"
# convert to factor for proper legend
result$group <- as.factor(1)
} else if (length(cleaned_terms) == 2) {
colnames(result)[1:2] <- c("x", "group")
} else if (length(cleaned_terms) == 3) {
colnames(result)[1:3] <- c("x", "group", "facet")
} else if (length(cleaned_terms) == 4) {
colnames(result)[1:4] <- c("x", "group", "facet", "panel")
}
# sort columns
result[, columns[columns %in% colnames(result)]]
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.