Nothing
ls <- function(bn, bs, ix, iy, nobs, nvars, x, y, pf, dfmax,
pmax, nlam, flmin, ulam, eps, maxit, vnames, group, intr) {
#################################################################################
# call Fortran core
gamma <- rep(NA, bn)
for (g in 1:bn) gamma[g] <- max(eigen(crossprod(x[, ix[g]:iy[g]]))$values)
gamma <- gamma/nobs
gamma <- as.double(gamma)
fit <- .Fortran("ls_f", bn, bs, ix, iy, gamma, nobs, nvars, as.double(x),
as.double(y), pf, dfmax, pmax, nlam, flmin, ulam, eps, maxit, intr, nalam = integer(1),
b0 = double(nlam), beta = double(nvars * nlam), idx = integer(pmax),
nbeta = integer(nlam), alam = double(nlam), npass = integer(1), jerr = integer(1))
#################################################################################
# output
outlist <- getoutput(fit, maxit, pmax, nvars, vnames)
outlist <- c(outlist, list(npasses = fit$npass, jerr = fit$jerr, group = group))
class(outlist) <- c("ls")
outlist
}
logit <- function(bn, bs, ix, iy, nobs, nvars, x, y, pf,
dfmax, pmax, nlam, flmin, ulam, eps, maxit, vnames, group, intr) {
#################################################################################
# call Fortran core
gamma <- rep(NA, bn)
for (g in 1:bn) gamma[g] <- max(eigen(crossprod(x[, ix[g]:iy[g]]))$values)
gamma <- 0.25 * gamma/nobs
gamma <- as.double(gamma)
fit <- .Fortran("log_f", bn, bs, ix, iy, gamma, nobs, nvars, as.double(x),
as.double(y), pf, dfmax, pmax, nlam, flmin, ulam, eps, maxit, intr, nalam = integer(1),
b0 = double(nlam), beta = double(nvars * nlam), idx = integer(pmax),
nbeta = integer(nlam), alam = double(nlam), npass = integer(1), jerr = integer(1))
#################################################################################
# output
outlist <- getoutput(fit, maxit, pmax, nvars, vnames)
outlist <- c(outlist, list(npasses = fit$npass, jerr = fit$jerr, group = group))
class(outlist) <- c("logit")
outlist
}
hsvm <- function(delta, bn, bs, ix, iy, nobs, nvars, x, y,
pf, dfmax, pmax, nlam, flmin, ulam, eps, maxit, vnames, group, intr) {
#################################################################################
# call Fortran core
gamma <- rep(NA, bn)
for (g in 1:bn) gamma[g] <- max(eigen(crossprod(x[, ix[g]:iy[g]]))$values)
gamma <- 2 * gamma/(delta * nobs)
gamma <- as.double(gamma)
fit <- .Fortran("hsvm_f", delta, bn, bs, ix, iy, gamma, nobs, nvars, as.double(x),
as.double(y), pf, dfmax, pmax, nlam, flmin, ulam, eps, maxit, intr, nalam = integer(1),
b0 = double(nlam), beta = double(nvars * nlam), idx = integer(pmax),
nbeta = integer(nlam), alam = double(nlam), npass = integer(1), jerr = integer(1))
#################################################################################
# output
outlist <- getoutput(fit, maxit, pmax, nvars, vnames)
outlist <- c(outlist, list(npasses = fit$npass, jerr = fit$jerr, group = group))
class(outlist) <- c("hsvm")
outlist
}
sqsvm <- function(bn, bs, ix, iy, nobs, nvars, x, y, pf,
dfmax, pmax, nlam, flmin, ulam, eps, maxit, vnames, group, intr) {
#################################################################################
# call Fortran core
gamma <- rep(NA, bn)
for (g in 1:bn) gamma[g] <- max(eigen(crossprod(x[, ix[g]:iy[g]]))$values)
gamma <- 4 * gamma/nobs
gamma <- as.double(gamma)
fit <- .Fortran("sqsvm_f", bn, bs, ix, iy, gamma, nobs, nvars, as.double(x),
as.double(y), pf, dfmax, pmax, nlam, flmin, ulam, eps, maxit, intr, nalam = integer(1),
b0 = double(nlam), beta = double(nvars * nlam), idx = integer(pmax),
nbeta = integer(nlam), alam = double(nlam), npass = integer(1), jerr = integer(1))
#################################################################################
# output
outlist <- getoutput(fit, maxit, pmax, nvars, vnames)
outlist <- c(outlist, list(npasses = fit$npass, jerr = fit$jerr, group = group))
class(outlist) <- c("sqsvm")
outlist
}
wls <- function(bn, bs, ix, iy, nobs, nvars, x, y, pf, weight, dfmax,
pmax, nlam, flmin, ulam, eps, maxit, vnames, group, intr) {
#################################################################################
# call Fortran core
gamma <- rep(NA, bn)
wx <- weight %*% x
for (g in 1:bn) gamma[g] <- max(eigen(crossprod(x[, ix[g]:iy[g]], wx[, ix[g]:iy[g]]))$values)
gamma <- as.double(gamma)
fit <- .Fortran("wls_f", bn, bs, ix, iy, as.double(weight), gamma, nobs, nvars, as.double(x),
as.double(y), pf, dfmax, pmax, nlam, flmin, ulam, eps, maxit, intr, nalam = integer(1),
b0 = double(nlam), beta = double(nvars * nlam), idx = integer(pmax),
nbeta = integer(nlam), alam = double(nlam), npass = integer(1), jerr = integer(1))
#################################################################################
# output
outlist <- getoutput(fit, maxit, pmax, nvars, vnames)
outlist <- c(outlist, list(npasses = fit$npass, jerr = fit$jerr, group = group))
class(outlist) <- c("ls")
outlist
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.