Nothing
########### copy the following code from loon ################
# to remove the dependency
#' @title scale data
#' @description It is mainly used in serial axes
#' @param data A data frame
#' @param sequence vector with variable names that defines the axes sequence.
#' If \code{NULL}, it will be set as the column names automatically.
#' @param scaling one of \code{data}, \code{variable}, \code{observation} or
#' \code{none} (not suggested the layout is the same with \code{data}) to specify how the data is scaled.
#' @param displayOrder the order of the display
#' @param reserve If \code{TRUE}, return the variables not shown in \code{sequence} as well;
#' else only return the variables defined in \code{sequence}.
#' @param as.data.frame Return a matrix or a data.frame
# loon::l_getScaledData
get_scaledData <- function(data,
sequence = NULL,
scaling = c("data", "variable", "observation", "none"),
displayOrder = NULL,
reserve = FALSE,
as.data.frame = FALSE) {
data <- as.data.frame(data)
if(missing(data)) return(NULL)
scaling <- match.arg(scaling)
displayOrder <- displayOrder %||% seq(nrow(data))
if(reserve && !is.null(sequence)) {
colNames <- colnames(data)
leftNames <- setdiff(colNames, sequence)
leftData <- data[, leftNames]
scaledData <- data[, sequence]
d <- suppressWarnings(loon_get_scaledData(data = scaledData,
sequence = sequence,
scaling = scaling,
displayOrder = displayOrder))
rightNames <- colnames(d)
# f return a matrix
d <- cbind(leftData, d)
colnames(d) <- c(leftNames, rightNames)
} else {
d <- suppressWarnings(loon_get_scaledData(data = data,
sequence = sequence,
scaling = scaling,
displayOrder = displayOrder))
}
if(as.data.frame)
as.data.frame(d, stringsAsFactors = FALSE)
else
as.matrix(d)
}
# loon default `get_scaledData`
# no dependency to loon any more
loon_get_scaledData <- function(data,
sequence = NULL,
scaling = c("data", "variable", "observation", "none"),
displayOrder = NULL) {
# data is the original data set
if(missing(data) || is.null(data)) return(NULL)
if(is.null(displayOrder)) displayOrder <- seq(nrow(data))
if(!is.null(sequence)) {
if(!all(sequence %in% colnames(data))) {
colNames <- colnames(data)
if(!all(sequence %in% colNames)) {
warning("The sequence names, ",
setdiff(sequence, colNames),
", are not found in the data.",
call. = FALSE)
sequence <- intersect(sequence, colNames)
}
}
data <- data[, sequence]
}
scaling <- match.arg(scaling)
is_char <- FALSE
is_factor <- FALSE
is_logical <- FALSE
dat <- sapply(data,
function(x) {
# `<<-` is used inside the function of `sapply`
# such operation only changes vars of my own namespace (i.e. `loon_get_scaledData`, etc)
# and global environment will not be affected.
# The main reason is to avoid the heavy `for` loop
if(is.numeric(x)) x
else if(is.character(x)) {
is_char <<- TRUE
as.numeric(as.factor(x))
} else if (is.factor(x)) {
is_factor <<- TRUE
as.numeric(x)
} else if(is.logical(x)) {
is_logical <<- TRUE
as.numeric(x)
} else stop("unknown data structure")
})
# give warning once
if(is_char || is_factor || is_logical)
warning("No numerical columns exist",
call. = FALSE)
if(length(displayOrder) == 1) {
dat <- setNames(as.data.frame(matrix(dat, nrow = 1)), names(dat))
if(scaling == "variable") {
warning("Only one observation in serialAxesData, 'scaling' will be set as 'data' by default",
call. = FALSE)
scaling <- 'data'
}
}
switch(scaling,
"variable" = {
minV <- apply(dat, 2, "min")
maxV <- apply(dat, 2, "max")
dat <- dat[displayOrder, ]
t(
(t(dat) - minV) / (maxV - minV)
)
},
"observation" = {
minO <- apply(dat, 1, "min")
maxO <- apply(dat, 1, "max")
dat <- (dat - minO) / (maxO - minO)
dat[displayOrder, ]
},
"data" = {
minD <- min(dat)
maxD <- max(dat)
dat <- dat[displayOrder, ]
(dat - minD)/ (maxD - minD)
},
"none" = {
dat[displayOrder, ]
})
}
#' # `geom_serialaxes` can be considered as a wrap of `geom_path`
#' # Following example illustrates how to convert a "widens" data to a "lengthens" data
#' # and use `geom_path` to construct the parallel axes
#' if(require("tidyr") && require("dplyr")) {
#' # pivot iris from wide to long
#' long_data <- iris %>%
#' # set the scale of data
#' get_scaledData(scaling = "variable",
#' as.data.frame = TRUE) %>%
#' # add new variables
#' dplyr::mutate(group = seq(dplyr::n()),
#' colour = Species) %>%
#' # pivot data from wide to long
#' tidyr::pivot_longer(cols = Sepal.Length:Species,
#' names_to = "x",
#' values_to = "y") %>%
#' # change the variable type
#' dplyr::mutate(
#' x = unclass(factor(x, levels = colnames(iris))),
#' colour = factor(colour)
#' )
#' # a glance
#' long_data
#' p <- ggplot(long_data,
#' mapping = aes(x = x, y = y, colour = colour)) +
#' geom_path(mapping = aes(group = group), alpha = 0.5)
#' p
#' # add density
#' p + geom_density_(mapping = aes(fill = colour), alpha = 0.5)
#' }
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.