Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.width = 3.5,
fig.height = 2.5,
echo = TRUE
)
suppressPackageStartupMessages({
library(BGmisc)
library(ggplot2)
library(dplyr)
library(reshape2)
library(tidyverse)
})
## -----------------------------------------------------------------------------
library(ggpedigree)
# Load the example data
data("redsquirrels")
## -----------------------------------------------------------------------------
# sumped <- summarizePedigrees(redsquirrels,
# famID = "famID",
# personID = "personID",
# nbiggest = 5
# )
# Set target family for visualization
fam_filter <- 160 # sumped$biggest_families$famID[3]
# Filter for the largest family, recode sex if needed
ped_filtered <- redsquirrels %>%
recodeSex(code_female = "F") %>%
filter(famID == fam_filter)
# Calculate relatedness matrices
add_mat <- ped2add(ped_filtered, isChild_method = "partialparent", sparse = FALSE)
mit_mat <- ped2mit(ped_filtered, isChild_method = "partialparent", sparse = FALSE)
## -----------------------------------------------------------------------------
p_add <- ggRelatednessMatrix(
add_mat,
interactive = FALSE,
config = list(
color_palette = c("white", "orange", "red"),
scale_midpoint = 0.55,
cluster = TRUE,
title = "Additive Genetic Relatedness",
include_upper_triangle = FALSE,
include_lower_triangle = TRUE
)
)
p_add
## ----mit_mat------------------------------------------------------------------
p_mit <- ggRelatednessMatrix(
mit_mat,
interactive = TRUE,
config = list(
color_palette = c("white", "skyblue", "darkblue"),
scale_midpoint = 0.55,
cluster = TRUE,
title = "Mitochondrial Relatedness",
text_size = 6,
return_widget = TRUE
)
)
## ----eval=FALSE, include=TRUE-------------------------------------------------
# p_mit
## ----echo=FALSE---------------------------------------------------------------
# reduce file size for CRAN
if (interactive()) {
plotly::partial_bundle(p_mit)
} else {
plotly::partial_bundle(p_mit, local = TRUE)
}
## -----------------------------------------------------------------------------
p_add_noclust <- ggRelatednessMatrix(
add_mat,
config = list(
cluster = FALSE, title = "Additive Relatedness (No Clustering)" # ,
# geom = "geom_raster"
)
)
p_add_noclust
## -----------------------------------------------------------------------------
if (requireNamespace("corrplot", quietly = TRUE)) {
corrplot::corrplot(
as.matrix(add_mat),
method = "color",
type = "lower",
col.lim = c(0, 1.25),
is.corr = FALSE,
title = "Additive Relatedness",
order = "hclust",
col = corrplot::COL1("Reds", 100),
tl.pos = "l", tl.col = "black", tl.srt = 5, tl.cex = 0.2,
mar = c(0, 0, 2, 0)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.