demo/interactive.R

library(ggvis)

# Slider input in transform_smooth
mtcars %>% ggvis(x = ~wt, y = ~mpg) %>%
  layer_points() %>%
  layer_smooths(
    span = input_slider(0.2, 1, value = 0.5, step = 0.05, label = "span")
  )


# Slider and select input in transform_density
mtcars %>% ggvis(x = ~wt) %>%
  layer_densities(
    adjust = input_slider(.1, 2, value = 1, step = .1, label = "Bandwidth adjustment"),
    kernel = input_select(
      c("Gaussian" = "gaussian", "Epanechnikov" = "epanechnikov",
        "Rectangular" = "rectangular", "Triangular" = "triangular",
        "Biweight" = "biweight", "Cosine" = "cosine", "Optcosine" = "optcosine"),
      label = "Kernel")
  )

# Example with value map function
mtcars %>% ggvis(x = ~wt, y = ~mpg) %>%
  layer_points() %>%
  layer_model_predictions(model = "loess",
    model_args = list(n = input_select(
      choices = c("Two", "Six", "Eighty"),
      map = function(value) switch(value, Two = 2, Six = 6, Eighty = 80),
      label = "Number of points"
    ))
  )

# Checkbox input
mtcars %>% ggvis(x = ~wt, y = ~mpg) %>%
  layer_points(
    opacity := input_checkbox(label = "Semi-transparent",
                                    map = function(val) ifelse(val, .3, 1))) %>%
  layer_model_predictions(
    model = input_checkbox(label = "LOESS (curve) model fit",
                            map = function(val) ifelse(val, "loess", "lm")))

# Text input
mtcars %>% ggvis(x = ~wt, y = ~mpg) %>%
  layer_points(fill := input_text(label = "Point color", value = "red")) %>%
  layer_model_predictions(model = input_text(label = "Model type", value = "loess"))

# Numeric input
mtcars %>% ggvis(x = ~wt, y = ~mpg) %>%
  layer_points(size := input_numeric(value = 25, label = "Point size")) %>%
  layer_smooths(span = input_numeric(value = 0.5, label = "Interpolation points"))

# Radio buttons
mtcars %>% ggvis(x = ~wt, y = ~mpg) %>%
  layer_points() %>%
  layer_model_predictions(
    model = input_radiobuttons(c("LOESS" = "loess", "Linear" = "lm"),
      label = "Model type"),
    stroke := input_radiobuttons(c("Red" = "red", "Black" = "black"),
      label = "Line color")
  )

# Checkbox group
mtcars %>% ggvis(x = ~wt, y = ~mpg) %>%
  layer_points(
    fill := input_checkboxgroup(
      choices = c("Red" = "r", "Green" = "g", "Blue" = "b"),
      label = "Point color components",
      map = function(val) {
        rgb(0.8 * "r" %in% val, 0.8 * "g" %in% val, 0.8 * "b" %in% val)
      }
    )
  )

# Reactive properties -------------------------------------------------------
# Constant values, raw (not on a scale)
mtcars %>% ggvis(
    x = ~wt,
    y = ~mpg,
    fill := input_select(c("red", "blue"), label = "Color"),
    size := input_slider(10, 1000, 100, label = "Size"),
    opacity := input_slider(0, 1, 1, label = "Opacity")
  ) %>%
  layer_points()


# Constant values, on a scale
new_vals <- input_select(c("Set A" = "A", "Set B" = "B"),
  label = "Dynamically-generated column",
  map = function(value) {
    vals <- switch(value,
      "A" = rep(c("One", "Two")),
      "B" = c("First", "Second", "Third", "Fourth"))
    rep(vals, length = nrow(mtcars))
  })

mtcars %>% ggvis(x = ~wt, y = ~mpg, fill = new_vals) %>%
  layer_points()

# Variable values, raw (not on a scale)
mtc <- mtcars
mtc$colour1 <- c("red", "black")
mtc$colour2 <- c("blue", "gray")
mtc %>% ggvis(
    x = ~wt,
    y = ~mpg,
    fill := input_select(c("colour1", "colour2"), map = as.name)
  ) %>%
  layer_points()

# Variable values
mtcars %>% ggvis(
    x = ~wt,
    y = ~mpg,
    fill = input_select(c("mpg", "wt"), map = as.name)
  ) %>%
  layer_points()

Try the ggvis package in your browser

Any scripts or data that you put into this service are public.

ggvis documentation built on May 29, 2024, 1:12 a.m.