beta_CVX: Simulated data for the glmnet vignette

Description Usage Format Details Examples

Description

Simple simulated data, used to demonstrate the features of glmnet

Usage

1
2
3
4
5
6
7
8
data(BinomialExample)
data(CVXResults)
data(CoxExample)
data(MultiGaussianExample)
data(MultinomialExample)
data(PoissonExample)
data(QuickStartExample)
data(SparseExample)

Format

Data objects used to demonstrate features in the glmnet vignette

Details

Theses datasets are artificial, and ere used to test out some of the features of glmnet.

Examples

1
2
data(QuickStartExample)
glmnet(x,y)

Example output

Loading required package: Matrix
Loading required package: foreach
Loaded glmnet 2.0-10


Call:  glmnet(x = x, y = y) 

      Df    %Dev   Lambda
 [1,]  0 0.00000 1.631000
 [2,]  2 0.05528 1.486000
 [3,]  2 0.14590 1.354000
 [4,]  2 0.22110 1.234000
 [5,]  2 0.28360 1.124000
 [6,]  2 0.33540 1.024000
 [7,]  4 0.39040 0.933200
 [8,]  5 0.45600 0.850300
 [9,]  5 0.51540 0.774700
[10,]  6 0.57350 0.705900
[11,]  6 0.62550 0.643200
[12,]  6 0.66870 0.586100
[13,]  6 0.70460 0.534000
[14,]  6 0.73440 0.486600
[15,]  7 0.76210 0.443300
[16,]  7 0.78570 0.404000
[17,]  7 0.80530 0.368100
[18,]  7 0.82150 0.335400
[19,]  7 0.83500 0.305600
[20,]  7 0.84620 0.278400
[21,]  7 0.85550 0.253700
[22,]  7 0.86330 0.231200
[23,]  8 0.87060 0.210600
[24,]  8 0.87690 0.191900
[25,]  8 0.88210 0.174900
[26,]  8 0.88650 0.159300
[27,]  8 0.89010 0.145200
[28,]  8 0.89310 0.132300
[29,]  8 0.89560 0.120500
[30,]  8 0.89760 0.109800
[31,]  9 0.89940 0.100100
[32,]  9 0.90100 0.091170
[33,]  9 0.90230 0.083070
[34,]  9 0.90340 0.075690
[35,] 10 0.90430 0.068970
[36,] 11 0.90530 0.062840
[37,] 11 0.90620 0.057260
[38,] 12 0.90700 0.052170
[39,] 15 0.90780 0.047540
[40,] 16 0.90860 0.043310
[41,] 16 0.90930 0.039470
[42,] 16 0.90980 0.035960
[43,] 17 0.91030 0.032770
[44,] 17 0.91070 0.029850
[45,] 18 0.91110 0.027200
[46,] 18 0.91140 0.024790
[47,] 19 0.91170 0.022580
[48,] 19 0.91200 0.020580
[49,] 19 0.91220 0.018750
[50,] 19 0.91240 0.017080
[51,] 19 0.91250 0.015570
[52,] 19 0.91260 0.014180
[53,] 19 0.91270 0.012920
[54,] 19 0.91280 0.011780
[55,] 19 0.91290 0.010730
[56,] 19 0.91290 0.009776
[57,] 19 0.91300 0.008908
[58,] 19 0.91300 0.008116
[59,] 19 0.91310 0.007395
[60,] 19 0.91310 0.006738
[61,] 19 0.91310 0.006140
[62,] 20 0.91310 0.005594
[63,] 20 0.91310 0.005097
[64,] 20 0.91310 0.004644
[65,] 20 0.91320 0.004232
[66,] 20 0.91320 0.003856
[67,] 20 0.91320 0.003513

glmnet documentation built on Sept. 22, 2017, 9:02 a.m.