View source: R/print.cv.glmnet.R
print.cv.glmnet | R Documentation |
Print a summary of the results of cross-validation for a glmnet model.
## S3 method for class 'cv.glmnet'
print(x, digits = max(3, getOption("digits") - 3), ...)
x |
fitted 'cv.glmnet' object |
digits |
significant digits in printout |
... |
additional print arguments |
A summary of the cross-validated fit is produced, slightly different for a
'cv.relaxed' object than for a 'cv.glmnet' object. Note that a 'cv.relaxed'
object inherits from class 'cv.glmnet', so by directly invoking
print.cv.glmnet(object)
will print the summary as if
relax=TRUE
had not been used.
Jerome Friedman, Trevor Hastie and Rob Tibshirani
Maintainer:
Trevor Hastie hastie@stanford.edu
Friedman, J., Hastie, T. and Tibshirani, R. (2008)
Regularization Paths for Generalized Linear Models via Coordinate
Descent
https://arxiv.org/abs/1707.08692
Hastie, T.,
Tibshirani, Robert, Tibshirani, Ryan (2019) Extended Comparisons of
Best Subset Selection, Forward Stepwise Selection, and the Lasso
glmnet
, predict
and coef
methods.
x = matrix(rnorm(100 * 20), 100, 20)
y = rnorm(100)
fit1 = cv.glmnet(x, y)
print(fit1)
fit1r = cv.glmnet(x, y, relax = TRUE)
print(fit1r)
## print.cv.glmnet(fit1r) ## CHECK WITH TREVOR
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.