Nothing
#' @noRd
cv.glmnetr_perf = function(cv.glmnetr.list, testxs, testy__, trainxs, trainy__, family, ensemble, lasso_nms, lasso_xb_nms ) {
cv_glmnet_fit_ = cv.glmnetr.list$cv_glmnet_fit_
cv_lasso_fit = cv.glmnetr.list$cv_lasso_fit
cv_ridge_fit = cv.glmnetr.list$cv_ridge_fit
cv_elastic_fit = cv.glmnetr.list$cv_elastic_fit
lambda_null = cv.glmnetr.list$lambda_null
predmin = predict.cv.glmnetr(cv_lasso_fit , testxs, lambda=cv_lasso_fit$lambda.min, gamma=1, comment = 0)
predminR = predict.cv.glmnetr(cv_lasso_fit , testxs, lambda=cv_lasso_fit$relaxed$lambda.min , gamma=cv_lasso_fit$relaxed$gamma.min , comment = 0 )
predminR0 = predict.cv.glmnetr(cv_lasso_fit , testxs, lambda=cv_lasso_fit$relaxed$lambda.min.g0, gamma=0, comment=0)
predminEL = predict.cv.glmnetr(cv_elastic_fit, testxs, lambda="lambda.min" , gamma="gamma.min", comment=0 )
predridge = predict(cv_ridge_fit , testxs, s="lambda.min") ## default is x="lambda.1se"
# predridge2 = predict.cv.glmnetr(cv_ridge_fit , testxs)
# print(cbind(predridge, predridge2)[1:5,])
predmin.tr = predict.cv.glmnetr(cv_lasso_fit , trainxs, lambda=cv_lasso_fit$lambda.min, gamma=1, comment=0) ##### minimizing lambda model predictions #########
predminR.tr = predict.cv.glmnetr(cv_lasso_fit , trainxs, lambda="lambda.min" , gamma="gamma.min", comment = 0 ) ###### min RELAXED lasso ##########################
predminR0.tr = predict.cv.glmnetr(cv_lasso_fit , trainxs, lambda=cv_lasso_fit$relaxed$lambda.min.g0, gamma=0, comment=0) ###### min gamma = 0 RELAXED lasso #####
predminEL.tr = predict.cv.glmnetr(cv_elastic_fit, trainxs, lambda="lambda.min" , gamma="gamma.min", comment = 0 )
predridge.tr = predict(cv_ridge_fit , trainxs, s="lambda.min" )
predmin.cal = cal_train_xbhat( predmin , trainy__, predmin.tr , family )
predminR.cal = cal_train_xbhat( predminR , trainy__, predminR.tr , family )
predminR0.cal = cal_train_xbhat( predminR0, trainy__, predminR0.tr, family )
predminEL.cal = cal_train_xbhat( predminEL, trainy__, predminEL.tr, family )
predridge.cal = cal_train_xbhat( predridge, trainy__, predridge.tr, family )
predmin.cal.tr = cal_train_xbhat( predmin.tr , trainy__, predmin.tr , family )
predminR.cal.tr = cal_train_xbhat( predminR.tr , trainy__, predminR.tr , family )
predminR0.cal.tr = cal_train_xbhat( predminR0.tr, trainy__, predminR0.tr, family )
predminEL.cal.tr = cal_train_xbhat( predminEL.tr, trainy__, predminEL.tr, family )
predridge.cal.tr = cal_train_xbhat( predridge.tr, trainy__, predridge.tr, family )
# print( cor(cbind(predmin, predminR, predminR0, predminEL, predridge)) )
perfm1 = perf_gen( testy__ , predmin , family )
perfm2 = perf_gen( testy__ , predminR , family )
perfm3 = perf_gen( testy__ , predminR0 , family )
perfm4 = perf_gen( testy__ , predminEL , family )
perfm5 = perf_gen( testy__ , predridge , family )
perfm1.cal = perf_gen( testy__ , predmin.cal , family )
perfm2.cal = perf_gen( testy__ , predminR.cal , family )
perfm3.cal = perf_gen( testy__ , predminR0.cal , family )
perfm4.cal = perf_gen( testy__ , predminEL.cal , family )
perfm5.cal = perf_gen( testy__ , predridge.cal , family )
lasso.devian = c( perfm1[1] , perfm2[1] , perfm3[1] , perfm4[1] , perfm5[1] )
lasso.agree = c( perfm1[3] , perfm2[3] , perfm3[3] , perfm4[3] , perfm5[3] )
lasso.intcal = c( perfm1[4] , perfm2[4] , perfm3[4] , perfm4[4] , perfm5[4] )
lasso.lincal = c( perfm1[5] , perfm2[5] , perfm3[5] , perfm4[5] , perfm5[5] )
# lasso.cal.devian = c( perfm1[2] , perfm2[2] , perfm3[2] , perfm4[2] , perfm5[2] )
lasso.cal.devian = c( perfm1.cal[1] , perfm2.cal[1] , perfm3.cal[1] , perfm4.cal[1] , perfm5.cal[1] )
lasso.cal.agree = c( perfm1.cal[3] , perfm2.cal[3] , perfm3.cal[3] , perfm4.cal[3] , perfm5.cal[3] )
lasso.cal.intcal = c( perfm1.cal[4] , perfm2.cal[4] , perfm3.cal[4] , perfm4.cal[4] , perfm5.cal[4] )
lasso.cal.lincal = c( perfm1.cal[5] , perfm2.cal[5] , perfm3.cal[5] , perfm4.cal[5] , perfm5.cal[5] )
names(lasso.devian) = lasso_nms
names(lasso.agree) = lasso_nms
names(lasso.intcal) = lasso_nms
names(lasso.lincal) = lasso_nms
names(lasso.cal.devian) = lasso_nms
names(lasso.cal.agree) = lasso_nms
names(lasso.cal.intcal) = lasso_nms
names(lasso.cal.lincal) = lasso_nms
lasso.nzero = rep(0,5)
lasso.nzero[1] = cv_lasso_fit$nzero [ cv_lasso_fit$index[1] ]
lasso.nzero[2] = cv_lasso_fit$relaxed$nzero.min
lasso.nzero[3] = cv_lasso_fit$relaxed$nzero.min.g0
lasso.nzero[4] = cv_elastic_fit$relaxed$nzero.min
lasso.nzero[5] = cv_ridge_fit$nzero[ cv_ridge_fit$index[1] ]
names(lasso.nzero) = lasso_nms
## calibrate lasso ##
if (sum(ensemble[c(2:4,6:8)]) >= 1) {
ofst = lasso.intcal[4] + lasso.lincal[4] * predminR
if (family=="cox") { ofst = ofst - mean(ofst) }
} else { ofst = NULL }
xbetas.lasso = cbind( predmin , predminR , predminR0 , predminEL , predridge ,
predmin.cal, predminR.cal, predminR0.cal, predminEL.cal, predridge.cal )
xbetas.lasso.tr = cbind( predmin.tr , predminR.tr , predminR0.tr , predminEL.tr , predridge.tr ,
predmin.cal.tr, predminR.cal.tr, predminR0.cal.tr, predminEL.cal.tr, predridge.cal.tr )
colnames( xbetas.lasso ) = lasso_xb_nms
returnlist = list( lasso.devian=lasso.devian, lasso.agree=lasso.agree, lasso.intcal=lasso.intcal, lasso.lincal=lasso.lincal,
lasso.cal.devian=lasso.cal.devian, lasso.cal.agree=lasso.cal.agree, lasso.cal.intcal=lasso.cal.intcal, lasso.cal.lincal=lasso.cal.lincal,
lasso.nzero=lasso.nzero, xbetas.lasso=xbetas.lasso, xbetas.lasso.tr=xbetas.lasso.tr, ofst=ofst )
return( list( lasso.devian=lasso.devian, lasso.agree=lasso.agree, lasso.intcal=lasso.intcal, lasso.lincal=lasso.lincal,
lasso.cal.devian=lasso.cal.devian, lasso.cal.agree=lasso.cal.agree, lasso.cal.intcal=lasso.cal.intcal, lasso.cal.lincal=lasso.cal.lincal,
lasso.nzero=lasso.nzero, xbetas.lasso=xbetas.lasso, xbetas.lasso.tr=xbetas.lasso.tr, ofst=ofst ) )
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.