Specify a Diagonal Reference Term in a gnm Model Formula

Share:

Description

Dref is a function of class "nonlin" to specify a diagonal reference term in the formula argument to gnm.

Usage

1
Dref(..., delta = ~ 1)

Arguments

...

a comma-separated list of two or more factors.

delta

a formula with no left-hand-side specifying the model for each factor weight.

Details

Dref specifies diagonal reference terms as introduced by Sobel (1981, 1985). Such terms comprise an additive component for each factor of the form

w_f gamma_l

where w_f is the weight for factor f, gamma_l is the diagonal effect for level l and l is the level of factor f for the given data point.

The weights are constrained to be nonnegative and to sum to one as follows

w_f = exp(delta_f)/sum_i(exp(delta_i))

and the delta_f are modelled as specified by the delta argument (constant weights by default). The returned parameters are those in the model for delta_f, rather than the implied weights w_f. The DrefWeights function will take a fitted gnm model and return the weights w_f, along with their standard errors.

If the factors passed to Dref do not have exactly the same levels, the set of levels in the diagonal reference term is taken to be the union of the factor levels, sorted into increasing order.

Value

A list with the anticipated components of a "nonlin" function:

predictors

the factors passed to Dref and the formulae for the weights.

common

an index to specify that common effects are to be estimated across the factors.

term

a function to create a deparsed mathematical expression of the term, given labels for the predictors.

start

a function to generate starting values for the parameters.

call

the call to use as a prefix for parameter labels.

Author(s)

Heather Turner

References

Sobel, M. E. (1981), Diagonal mobility models: A substantively motivated class of designs for the analysis of mobility effects. American Sociological Review 46, 893–906.

Sobel, M. E. (1985), Social mobility and fertility revisited: Some new models for the analysis of the mobility effects hypothesis. American Sociological Review 50, 699–712.

Clifford, P. and Heath, A. F. (1993) The Political Consequences of Social Mobility. J. Roy. Stat. Soc. A, 156(1), 51-61.

Van der Slik, F. W. P., De Graaf, N. D and Gerris, J. R. M. (2002) Conformity to Parental Rules: Asymmetric Influences of Father's and Mother's Levels of Education. European Sociological Review 18(4), 489 – 502.

See Also

gnm, formula, nonlin.function

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
### Examples from Clifford and Heath paper
### (Results differ slightly - possible transcription error in
### published data?)
set.seed(1)

## reconstruct counts voting Labour/non-Labour
count <- with(voting, percentage/100 * total)
yvar <- cbind(count, voting$total - count)

## fit diagonal reference model with constant weights
classMobility <- gnm(yvar ~ -1 + Dref(origin, destination), 
                     family = binomial, data = voting)
DrefWeights(classMobility)

## create factors indicating movement in and out of salariat (class 1)
upward <- with(voting, origin != 1 & destination == 1)
downward <- with(voting, origin == 1 & destination != 1)

## fit separate weights for the "socially mobile" groups
socialMobility <- gnm(yvar ~ -1 + Dref(origin, destination,
                                       delta = ~ 1 + downward + upward),
                      family = binomial, data = voting)
DrefWeights(socialMobility)

## fit separate weights for downwardly mobile groups only
downwardMobility <- gnm(yvar ~ -1 + Dref(origin, destination,
                                         delta = ~ 1 + downward),
                        family = binomial, data = voting)
DrefWeights(downwardMobility)

## Not run: 	       
### Examples from Van der Slik paper
### For illustration only - data not publically available
### Using data in data.frame named 'conformity', with variables
### MCFM - mother's conformity score
### FCFF - father's conformity score
### MOPLM - a factor describing the mother's education with 7 levels
### FOPLF - a factor describing the father's education with 7 levels
### AGEM - mother's birth cohort
### MRMM - mother's traditional role model
### FRMF - father's traditional role model
### MWORK - mother's employment
### MFCM - mother's family conflict score
### FFCF - father's family conflict score

set.seed(1)

## Models for mothers' conformity score as specified in Figure 1
A <- gnm(MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM + 
         Dref(MOPLM, FOPLF), family = gaussian, data = conformity,
         verbose = FALSE)
A
## Call:
## gnm(formula = MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM + 
##     Dref(MOPLM, FOPLF), family = gaussian, data = conformity, 
##     verbose = FALSE)
## 
## Coefficients:
##                     AGEM                      MRMM  
##                  0.06363                  -0.32425  
##                     FRMF                     MWORK  
##                 -0.25324                  -0.06430  
##                     MFCM  Dref(MOPLM, FOPLF)delta1  
##                 -0.06043                  -0.33731  
## Dref(MOPLM, FOPLF)delta2   Dref(., .).MOPLM|FOPLF1  
##                 -0.02505                   4.95121  
##  Dref(., .).MOPLM|FOPLF2   Dref(., .).MOPLM|FOPLF3  
##                  4.86329                   4.86458  
##  Dref(., .).MOPLM|FOPLF4   Dref(., .).MOPLM|FOPLF5  
##                  4.72343                   4.43516  
##  Dref(., .).MOPLM|FOPLF6   Dref(., .).MOPLM|FOPLF7  
##                  4.18873                   4.43378  
## 
## Deviance:            425.3389 
## Pearson chi-squared: 425.3389 
## Residual df:         576    
 
## Weights as in Table 4
DrefWeights(A)
## Refitting with parameters of first Dref weight constrained to zero
## $MOPLM
##    weight        se
## 0.4225636 0.1439829
## 
## $FOPLF
##    weight        se
## 0.5774364 0.1439829 

F <- gnm(MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM + 
         Dref(MOPLM, FOPLF, delta = ~1 + MFCM), family = gaussian,
         data = conformity, verbose = FALSE)
F	 
## Call:
## gnm(formula = MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM + 
##     Dref(MOPLM, FOPLF, delta = ~1 + MFCM), family = gaussian, 
##     data = conformity, verbose = FALSE)
## 
## 
## Coefficients:
##                                                     AGEM  
##                                                  0.05818  
##                                                     MRMM  
##                                                 -0.32701  
##                                                     FRMF  
##                                                 -0.25772  
##                                                    MWORK  
##                                                 -0.07847  
##                                                     MFCM  
##                                                 -0.01694  
## Dref(MOPLM, FOPLF, delta = ~ . + MFCM).delta1(Intercept)  
##                                                  1.03515  
##           Dref(MOPLM, FOPLF, delta = ~ 1 + .).delta1MFCM  
##                                                 -1.77756  
## Dref(MOPLM, FOPLF, delta = ~ . + MFCM).delta2(Intercept)  
##                                                 -0.03515  
##           Dref(MOPLM, FOPLF, delta = ~ 1 + .).delta2MFCM  
##                                                  2.77756  
##              Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF1  
##                                                  4.82476  
##              Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF2  
##                                                  4.88066  
##              Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF3  
##                                                  4.83969  
##              Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF4  
##                                                  4.74850  
##              Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF5  
##                                                  4.42020  
##              Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF6  
##                                                  4.17957  
##              Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF7  
##                                                  4.40819  
## 
## Deviance:            420.9022 
## Pearson chi-squared: 420.9022 
## Residual df:         575 
##
##

## Standard error for MFCM == 1 lower than reported by Van der Slik et al
DrefWeights(F)
## Refitting with parameters of first Dref weight constrained to zero
## $MOPLM
##   MFCM     weight        se
## 1    1 0.02974675 0.2277711
## 2    0 0.74465224 0.2006916
## 
## $FOPLF
##   MFCM    weight        se
## 1    1 0.9702532 0.2277711
## 2    0 0.2553478 0.2006916

## End(Not run)

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.