Nothing
#'Apply Goodness of Fit Test to the Residuals of a Generalized Linear Model with
#'Gamma Link Function
#'
#'\code{testGLMGamma} is used to check the validity of Gamma assumption for the
#'response variable when fitting generalized linear model. Common link functions
#'in \code{\link{glm}} can be used here.
#'
#'@param x is either a numeric vector or a design matrix. In the design matrix,
#' rows indicate observations and columns presents covariats.
#'
#'@param y is a vector of numeric values with the same number of observations or
#' number of rows as x.
#'
#'@param fit is an object of class \code{glm} and its default value is NULL. If
#' a fit of class \code{glm} is provided, the arguments \code{x}, \code{y}, and
#' \code{l} will be ignored. We recommend using \code{\link[glm2]{glm2}} function
#' from \code{\link[glm2]{glm2}} package since it provides better convergence while
#' optimizing the likelihood to estimate coefficients of the model by IWLS
#' method. It is required to return design matrix by \code{x} = \code{TRUE} in
#' \code{\link{glm}} or \code{\link[glm2]{glm2}} function. For more information on
#' how to do this, refer to the help documentation for the \code{\link{glm}} or
#' \code{\link[glm2]{glm2}} function.
#'
#'@param l a character vector indicating the link function that should be used
#' for Gamma family. Acceptable link functions for Gamma family are inverse,
#' identity and log. For more details see \code{\link{Gamma}} from stats
#' package.
#'
#'@param discretize If \code{TRUE}, the covariance function of \eqn{W_{n}(u)}
#' process is evaluated at some data points (see \code{ngrid} and
#' \code{gridpit}), and the integral equation is replaced by a matrix equation.
#' If \code{FALSE} (the default value), the covariance function is first
#' estimated, and then the integral equation is solved to find the eigenvalues.
#' The results of our simulations recommend using the estimated covariance for
#' solving the integral equation. The parameters \code{ngrid}, \code{gridpit},
#' and \code{hessian} are only relevant when \code{discretize = TRUE}.
#'
#'@param ngrid the number of equally spaced points to discretize the (0,1)
#' interval for computing the covariance function.
#'
#' @param gridpit logical. If \code{TRUE} (the default value), the parameter
#' ngrid is ignored and (0,1) interval is divided based on probability
#' integral transforms or PITs obtained from the sample. If \code{FALSE}, the
#' interval is divided into ngrid equally spaced points for computing the
#' covariance function.
#'
#'@param hessian logical. If \code{TRUE} the Fisher information matrix is
#' estimated by the observed Hessian Matrix based on the sample. If
#' \code{FALSE} (the default value) the Fisher information matrix is estimated
#' by the variance of the observed score matrix.
#'
#'@param start.value a numeric value or vector. This is the same as \code{start}
#' argument in \code{\link{glm}} or \code{\link[glm2]{glm2}}. The value is a starting
#' point in iteratively reweighted least squares (IRLS) algorithm for
#' estimating the MLE of coefficients in the model.
#'
#'@param control a list of parameters to control the fitting process in
#' \code{glm} or \code{glm2} function. For more details, see
#' \code{\link{glm.control}}.
#'
#'@param method a character string indicating which goodness-of-fit statistic is
#' to be computed. The default value is 'cvm' for the Cramer-von-Mises
#' statistic. Other options include 'ad' for the Anderson-Darling statistic,
#' and 'both' to compute both cvm and ad.
#'
#'@return A list of two containing the following components:
#' - Statistic: the value of goodness-of-fit statistic.
#' - p-value: the approximate p-value for the goodness-of-fit test.
#' if method = 'cvm' or method = 'ad', it returns a numeric value for the
#' statistic and p-value. If method = 'both', it returns a numeric vector with
#' two elements and one for each statistic.
#' - converged: logical to indicate if the IWLS algorithm have converged or not.
#'
#'@export
#'
#' @examples
#' set.seed(123)
#' n <- 50
#' p <- 5
#' x <- matrix( rnorm(n*p, mean = 10, sd = 0.1), nrow = n, ncol = p)
#' b <- runif(p)
#' e <- rgamma(n, shape = 3)
#' y <- exp(x %*% b) * e
#' testGLMGamma(x, y, l = 'log')
#' myfit <- glm(y ~ x, family = Gamma('log'), x = TRUE, y = TRUE)
#' testGLMGamma(fit = myfit)
testGLMGamma = function(x, y, fit = NULL, l = 'log', discretize = FALSE, ngrid = length(y), gridpit = TRUE, hessian = FALSE, start.value = NULL, control = NULL, method = 'cvm'){
if( is.null(fit) ){
# Make sure all observations in response are positive
if( any(y <= 0) ){
stop('y values must be positive for Gamma distribution.')
}
# Check if the link is valid
if( !(l %in% c('inverse','identity','log')) ){
stop('The link for Gamma must be either inverse, identity, or log.')
}
# Make sure discretize is logical type
if( !is.logical(discretize) ){
stop('discretize must be either TRUE or FALSE.')
}
# Make sure ngrid is integer type
if( !(ngrid %% 1 == 0) ){
stop('ngrid must be an integer number.')
}
# Make sure discretize and hessian are logical type
if( !is.logical(gridpit) ){
stop('gridpit must be either TRUE or FALSE.')
}
if( !is.logical(hessian) ){
stop('hessian must be either TRUE or FALSE.')
}
if( !(method %in% c('cvm','ad','both')) ){
stop('method must be either cvm, ad, or both.')
}
# Assign control vector for glm2 function
if( is.null(control) ){
ctl <- glm.control(epsilon = 1e-8, maxit = 100, trace = F)
}else{
ctl <- control
}
# Check if the starting value is provided
if( is.null(start.value) ){
# Fit a GLM-Gamma to the data to compute maximum likelihood estimation of coefficients
fitobj <- glm2::glm2(formula = y ~ x, family = Gamma(link = l), x = TRUE, y = TRUE, control = ctl, na.action = na.omit)
}else{
if( length(start.value) != (ncol(x)+1) ){
stop('The lenght of starting.value does not match the number of columns in x.')
}
# Fit a GLM-Gamma to the data to compute maximum likelihood estimation of coefficients
fitobj <- glm2::glm2(formula = y ~ x, family = Gamma(link = l), x = TRUE, y = TRUE, control = ctl, na.action = na.omit, start = start.value)
}
mu <- fitobj$family$linkfun(fitobj$linear.predictors)
if( any(mu < 0) ){
stop('The fitted mean response is negative.')
}
}
if( !is.null(fit) ){
if (!inherits(fit, 'glm')){
stop('The fit must be \'glm\' object returned by either glm function (from stats package) or glm2 function (from glm2 package).')
}
if( !(method %in% c('cvm','ad','both')) ){
stop('method must be either cvm, ad, or both.')
}
if( fit$family$family != 'Gamma' ){
stop('The family must be Gamma.')
}
if( !(fit$family$link %in% c('inverse','identity','log')) ){
stop('The link for Gamma must be inverse, identity, or log.')
}
if( !is.matrix(fit$x) | !is.vector(fit$y) ){
stop('fit must contain the design matrix and the response variable. \n Consider setting x = TRUE and y = TRUE in glm or glm2 function to return both.')
}
fitobj <- fit
mu <- fitobj$family$linkfun(fitobj$linear.predictors)
if( any(mu < 0) ){
stop('The fitted mean response is negative.')
}
}
# Apply GLM Gamma to compute score, MLE of parameters, and pit values
temp <- applyGLMGamma(fit = fitobj)
Score <- temp$Score
pit <- temp$pit
par <- temp$par
# Get the sample size
n <- nrow(Score)
# Boolean to check if the IWLS algorithm have converged
converged <- temp$converged
if( !converged ){
message('The IWLS iterative algorithm did not converge. \n Consider increasing maxit or decreasing epsilon in glm.control() function.')
}
#
# Use the estimated covariance function and solving the integral equation analytically
#
if(!discretize){
# Find the rank of sorted pits
sort_indx <- order(pit)
# Reorder the rows of score matrix according to the ranks in pit
Score <- Score[sort_indx,]
if( method == 'cvm' | method == 'ad' ){
# Compute P matrix
P <- computeMatrix(n, Score, method = method)
# Adjust for the number of estimated parameters
P <- P / (n-ncol(Score)-1)
# Compute eigenvalues
ev <- eigen(P, only.values = TRUE, symmetric = TRUE)$values
}
if( method == 'both' ){
# Compute P matrix, adjust for number of estimated parameters, and compute eigenvalues for the case of cvm
P_cvm <- computeMatrix(n, Score, method = 'cvm')
P_cvm <- P_cvm/(n-ncol(Score)-1)
ev_cvm <- eigen(P_cvm, only.values = TRUE, symmetric = TRUE)$values
# Compute P matrix, adjust for number of estimated parameters, and compute eigenvalues for the case of ad
P_ad <- computeMatrix(n, Score, method = 'ad')
P_ad <- P_ad/(n-ncol(Score)-1)
ev_ad <- eigen(P_ad, only.values = TRUE, symmetric = TRUE)$values
}
# Compute gof statistics and pvalue according to the requested method
if( method == 'cvm' ){
# Compute CvM statistics
cvm <- getCvMStatistic(pit)
names(cvm) <- 'Cramer-von-Mises Statistic'
# Calculate pvalue
pvalue <- getpvalue(u = cvm, eigen = ev)
# Prepare a list to return statistic and pvalue
res <- list(Statistic = cvm, pvalue = pvalue)
return(res)
} else if ( method == 'ad' ){
AD <- getADStatistic(pit)
names(AD) <- 'Anderson-Darling Statistic'
# Calculate pvalue
pvalue <- getpvalue(u = AD, eigen = ev)
# Prepare a list to return statistic and pvalue
res <- list(Statistic = AD, pvalue = pvalue)
return(res)
}else{
# Fix this oart needs to have two diff sets of ev
cvm <- getCvMStatistic(pit)
cvm.pvalue <- getpvalue(u = cvm, eigen = ev_cvm)
AD <- getADStatistic(pit)
ad.pvalue <- getpvalue(u = AD, eigen = ev_ad)
gof.stat <- c(cvm, AD)
names(gof.stat) <- c('Cramer-von-Mises Statistic','Anderson-Darling Statistic')
# Prepare a list to return statistic and pvalue
res <- list(Statistics = gof.stat, pvalue = c(cvm.pvalue, ad.pvalue) )
return(res)
}
}
#
# Use the estimated covariance function and turning integral equation into a matrix equation
#
# Compute Fisher information matrix
if(hessian){
fisher <- glmgammaFisherByHessian(fit = fitobj, mle_shape = par['shape'])
}else{
fisher <- (n-1)*var(Score)/n
}
# Compute Eigen values
if( gridpit ){
ev <- getEigenValues(S = Score, FI = fisher, pit, me = method)
}else{
ev <- getEigenValues_manualGrid(S = Score, FI = fisher, pit, M = ngrid, me = method)
}
if( method == 'cvm'){
# Compute cvm statistic
cvm <- getCvMStatistic(pit)
# Compute p-value
pvalue <- getpvalue(u = cvm, eigen = ev)
res <- list(Statistic = cvm, pvalue = pvalue, converged = converged)
return(res)
} else if ( method == 'ad') {
# Compute ad statistics
ad <- getADStatistic(pit)
# Compute p-value
pvalue <- getpvalue(u = ad, eigen = ev)
res <- list(Statistic = ad, pvalue = pvalue, converged = converged)
return(res)
} else {
# Calculate both cvm and ad statisitcs
# Compute cvm statistic
cvm <- getCvMStatistic(pit)
names(cvm) <- 'Cramer-von-Mises Statistic'
# Compute p-value
cvm.pvalue <- getpvalue(u = cvm, eigen = ev)
names(cvm.pvalue) <- 'pvalue for Cramer-von-Mises test'
# 2. Compute ad calculations
ad <- getADStatistic(pit)
names(ad) <- 'Anderson-Darling Statistic'
# Compute p-value
ad.pvalue <- getpvalue(u = ad, eigen = ev)
names(ad.pvalue) <- 'Anderson-Darling test'
# Prepare a list to return both statistics and their approximate pvalue
res <- list(Statistics = c(cvm, ad), pvalue = c(cvm.pvalue, ad.pvalue) )
return(res)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.