Nothing
#' Apply Goodness of Fit Test for Gamma Distribution
#'
#' @description Performs the goodness-of-fit test based on empirical
#' distribution function to check if an i.i.d sample follows a Gamma
#' distribution.
#'
#' @param x a non-empty numeric vector of sample data.
#'
#' @param discretize If \code{TRUE}, the covariance function of \eqn{W_{n}(u)}
#' process is evaluated at some data points (see \code{ngrid} and
#' \code{gridpit}), and the integral equation is replaced by a matrix
#' equation. If \code{FALSE} (the default value), the covariance function is
#' first estimated, and then the integral equation is solved to find the
#' eigenvalues. The results of our simulations recommend using the estimated
#' covariance for solving the integral equation. The parameters \code{ngrid},
#' \code{gridpit}, and \code{hessian} are only relevant when \code{discretize
#' = TRUE}.
#'
#' @param ngrid the number of equally spaced points to discretize the (0,1)
#' interval for computing the covariance function.
#'
#' @param gridpit logical. If \code{TRUE} (the default value), the parameter
#' ngrid is ignored and (0,1) interval is divided based on probability
#' integral transforms or PITs obtained from the sample. If \code{FALSE}, the
#' interval is divided into ngrid equally spaced points for computing the
#' covariance function.
#'
#' @param hessian logical. If \code{TRUE} the Fisher information matrix is
#' estimated by the observed Hessian Matrix based on the sample. If
#' \code{FALSE} (the default value) the Fisher information matrix is estimated
#' by the variance of the observed score matrix.
#'
#' @param rate logical. If \code{TRUE} (the default value), the rate is
#' estimated in Gamma distribution. If \code{FALSE}, scale is estimated. See
#' \code{\link{GammaDist}} for more details.
#'
#' @param method a character string indicating which goodness-of-fit statistic
#' is to be computed. The default value is 'cvm' for the Cramer-von-Mises
#' statistic. Other options include 'ad' for the Anderson-Darling statistic,
#' and 'both' to compute both cvm and ad.
#'
#' @return A list of two containing the following components:
#' - Statistic: the value of goodness-of-fit statistic.
#' - p-value: the approximate p-value for the goodness-of-fit test.
#' if method = 'cvm' or method = 'ad', it returns a numeric value for the
#' statistic and p-value. If method = 'both', it returns a numeric vector with
#' two elements and one for each statistic.
#'
#'
#' @export
#'
#' @examples
#' set.seed(123)
#' sim_data <- rgamma(n = 50, shape = 3)
#' testGamma(x = sim_data)
#' sim_data <- runif(n = 50)
#' testGamma(x = sim_data)
testGamma = function(x, discretize = FALSE, ngrid = length(x), gridpit = FALSE, hessian = FALSE, rate = TRUE, method = 'cvm'){
if( !is.numeric(x) | !is.vector(x) ){
stop('x must be a numeric vector.')
}
# Make sure all observations are positive
if( any(x <= 0) ){
stop('x values must be positive for Gamma distribution')
}
if( !(ngrid > 0) ){
stop('ngrid must be a positive number.')
}
if( !(ngrid %% 1 == 0) ){
stop('ngrid must be an integer number.')
}
if( !is.logical(gridpit) ){
stop('gridpit must be either TRUE or FALSE.')
}
if( !is.logical(discretize) ){
stop('discretize must be either TRUE or FALSE.')
}
if( !is.logical(hessian) ){
stop('hessian must be either TRUE or FALSE.')
}
if( !is.vector(method) | length(method) > 1){
stop('method must be a character string with length one.')
}
if( !is.logical(rate) ){
stop('rate must be either TRUE or FALSE.')
}
if( !(method %in% c('cvm','ad','both')) ){
stop('method must be either cvm, ad, or both.')
}
# Get sample size
n <- length(x)
# Apply Gamma distribution
temp <- applyGamma(x, use.rate = rate)
# Extract score function, pit values, and MLE
Score <- temp$Score
pit <- temp$pit
par <- temp$par
#
# Use the estimated covariance function and solving the integral equation analytically
#
if(!discretize){
# Find the rank of sorted pits
sort_indx <- order(pit)
# Reorder the rows of score matrix according to the ranks in pit
Score <- Score[sort_indx,]
# Compute eigenvalues for the case of cvm or ad
if( method == 'cvm' | method == 'ad' ){
# Compute P matrix
P <- computeMatrix(n, Score, method = method)
# Adjust for the number of estimated parameters
P <- P / (n-ncol(Score)-1)
# Compute eigenvalues
ev <- eigen(P, only.values = TRUE, symmetric = TRUE)$values
}
# Compute eigenvalues for both cvm and ad
if( method == 'both' ){
# Compute P matrix, adjust for number of estimated parameters, and compute eigenvalues for the case of cvm
P_cvm <- computeMatrix(n, Score, method = 'cvm')
P_cvm <- P_cvm/(n-ncol(Score)-1)
ev_cvm <- eigen(P_cvm, only.values = TRUE, symmetric = TRUE)$values
# Compute P matrix, adjust for number of estimated parameters, and compute eigenvalues for the case of ad
P_ad <- computeMatrix(n, Score, method = 'ad')
P_ad <- P_ad/(n-ncol(Score)-1)
ev_ad <- eigen(P_ad, only.values = TRUE, symmetric = TRUE)$values
}
# Compute gof statistics and pvalue according to the requested method
if( method == 'cvm' ){
# Compute CvM statistics
cvm <- getCvMStatistic(pit)
names(cvm) <- 'Cramer-von-Mises Statistic'
# Calculate pvalue
pvalue <- getpvalue(u = cvm, eigen = ev)
# Prepare a list to return statistic and pvalue
res <- list(Statistic = cvm, pvalue = pvalue)
return(res)
} else if ( method == 'ad' ){
AD <- getADStatistic(pit)
names(AD) <- 'Anderson-Darling Statistic'
# Calculate pvalue
pvalue <- getpvalue(u = AD, eigen = ev)
# Prepare a list to return statistic and pvalue
res <- list(Statistic = AD, pvalue = pvalue)
return(res)
}else{
# Fix this oart needs to have two diff sets of ev
cvm <- getCvMStatistic(pit)
cvm.pvalue <- getpvalue(u = cvm, eigen = ev_cvm)
AD <- getADStatistic(pit)
ad.pvalue <- getpvalue(u = AD, eigen = ev_ad)
gof.stat <- c(cvm, AD)
names(gof.stat) <- c('Cramer-von-Mises Statistic','Anderson-Darling Statistic')
# Prepare a list to return statistic and pvalue
res <- list(Statistics = gof.stat, pvalue = c(cvm.pvalue, ad.pvalue) )
return(res)
}
}
#
# Use the estimated covariance function and turning integral equation into a matrix equation
#
# Calculate Fisher information matrix by computing the variance of score from the sample or Hessian matrix
if( hessian ){
fisher <- gammaFisherByHessian(par)
}else{
fisher <- (n-1)*var(Score)/n
}
# Compute Eigen values
if( gridpit ){
ev <- getEigenValues(S = Score, FI = fisher, pit, me = method)
}else{
ev <- getEigenValues_manualGrid(S = Score, FI = fisher, pit, M = ngrid, me = method)
}
if( method == 'cvm'){
# Compute Cramer-von-Mises statistic
cvm <- getCvMStatistic(pit)
# Compute pvalue
pvalue <- getpvalue(u = cvm, eigen = ev)
res <- list(Statistic = cvm, pvalue = pvalue)
return(res)
} else if ( method == 'ad') {
# Compute Anderson-Darling statistic
AD <- getADStatistic(pit)
# Compute pvalue
pvalue <- getpvalue(u = AD, eigen = ev)
res <- list(Statistic = AD, pvalue = pvalue)
return(res)
} else {
# Calculate both cvm and ad statisitcs
# 1. Do cvm calculation
cvm <- getCvMStatistic(pit)
names(cvm) <- 'Cramer-von-Mises Statistic'
# Calculate pvalue
cvm.pvalue <- getpvalue(u = cvm, eigen = ev)
names(cvm.pvalue) <- 'pvalue for Cramer-von-Mises test'
# 2. Do ad calculations
ad <- getADStatistic(pit)
names(ad) <- 'Anderson-Darling Statistic'
# Calculate pvalue
ad.pvalue <- getpvalue(u = ad, eigen = ev)
names(ad.pvalue) <- 'Anderson-Darling test'
# Prepare a list to return both statistics and their approximate pvalue
res <- list(Statistics = c(cvm, ad), pvalue = c(cvm.pvalue, ad.pvalue) )
return(res)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.