Nothing
# Declare global variables to avoid R CMD check warnings
utils::globalVariables(c("sd"))
#' Green Space Similarity Index (GSSI)
#'
#' This function calculates the Green Space Similarity Index (GSSI) for a list of cities,
#' based on the variability of green space sizes and their connectivity.
#' The function uses the `spatstat` package to calculate proximity measures and combines these
#' with area-based metrics to form the GSSI. The index is useful for comparing urban green
#' spaces across different cities.
#'
#' @param green_spaces_list A list of 'sf' objects, each representing the green spaces in a city.
#' @param equal_area_crs A character string representing an equal-area CRS for accurate area measurement.
#' Default is "ESRI:54009".
#' @return A numeric vector of normalized GSSI values for each city.
#' @importFrom sf st_as_sf st_transform st_area st_bbox st_coordinates
#' @importFrom spatstat.geom as.ppp nndist owin
#' @importFrom stats sd
#' @examples
#' \donttest{
#' d1 <- get_osm_data("New Delhi, India")
#' dsf <- d1$green_areas$osm_polygons
#' d2 <- get_osm_data("Basel, Switzerland")
#' bsf <- d2$green_areas$osm_polygons
#' d3 <- get_osm_data("Medellin, Colombia")
#' msf <- d3$green_areas$osm_polygons
#' cities_data <- list(dsf, bsf, msf)
#' gssi_values <- gssi(cities_data)
#' }
#' @export
gssi <- function(green_spaces_list, equal_area_crs = "ESRI:54009") {
# Validate inputs
if (!is.list(green_spaces_list)) {
stop("green_spaces_list must be a list.", call. = FALSE)
}
if (!all(sapply(green_spaces_list, inherits, "sf"))) {
stop("All items in green_spaces_list must be sf objects.", call. = FALSE)
}
if (!is.character(equal_area_crs)) {
stop("equal_area_crs must be a character string representing a CRS.", call. = FALSE)
}
ggssi_values <- numeric(length(green_spaces_list))
for (i in seq_along(green_spaces_list)) {
green_areas <- sf::st_as_sf(green_spaces_list[[i]])
# Check for empty or single-element green areas
if (nrow(green_areas) < 2) {
message("Skipping city ", i, " - not enough green areas (less than 2)")
ggssi_values[i] <- NA
next
}
# Transform and calculate area
green_areas_transformed <- sf::st_transform(green_areas, crs = equal_area_crs)
green_areas$area <- as.numeric(sf::st_area(green_areas_transformed))
# Area-based metrics
mean_area <- mean(green_areas$area)
sd_area <- sd(green_areas$area)
coefficient_of_variation_area <- sd_area / mean_area
# Proximity calculation using spatstat
coords <- sf::st_coordinates(green_areas_transformed)
bbox <- sf::st_bbox(green_areas_transformed)
window <- spatstat.geom::owin(xrange = bbox[c(1, 3)], yrange = bbox[c(2, 4)])
ppp_object <- spatstat.geom::as.ppp(coords, W = window)
nn_distances <- spatstat.geom::nndist(ppp_object)
avg_nn_distance <- mean(nn_distances)
# Combine area and proximity metrics
combined_metric <- (1 / coefficient_of_variation_area) * (1 / avg_nn_distance)
ggssi_values[i] <- combined_metric
}
# Normalize GGSSI values
max_ggssi <- max(ggssi_values, na.rm = TRUE)
if (max_ggssi == 0 || is.infinite(max_ggssi)) {
message("No valid GGSSI values calculated")
return(NA)
}
normalized_ggssi <- ggssi_values / max_ggssi
return(normalized_ggssi)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.