Nothing
\begin{table}[!t]
\caption*{
{\large Fixed Design under AHR Method\textsuperscript{\textit{1}}}
}
\fontsize{12.0pt}{14.4pt}\selectfont
\begin{tabular*}{\linewidth}{@{\extracolsep{\fill}}lrrrrrr}
\toprule
Design & N & Events & Time & Bound & alpha & Power \\
\midrule\addlinespace[2.5pt]
Average hazard ratio & 463.078 & 324.7077 & 36 & 1.959964 & 0.025 & 0.9 \\
\bottomrule
\end{tabular*}
\begin{minipage}{\linewidth}
\textsuperscript{\textit{1}}Power computed with average hazard ratio method.\\
\end{minipage}
\end{table}
\begin{table}[!t]
\caption*{
{\large Custom Title\textsuperscript{\textit{1}}}
}
\fontsize{12.0pt}{14.4pt}\selectfont
\begin{tabular*}{\linewidth}{@{\extracolsep{\fill}}lrrrrrr}
\toprule
Design & N & Events & Time & Bound & alpha & Power \\
\midrule\addlinespace[2.5pt]
Average hazard ratio & 463.078 & 324.7077 & 36 & 1.959964 & 0.025 & 0.9 \\
\bottomrule
\end{tabular*}
\begin{minipage}{\linewidth}
\textsuperscript{\textit{1}}Custom footnote.\\
\end{minipage}
\end{table}
\begin{table}[!t]
\caption*{
{\large Fixed Design under Fleming-Harrington Method\textsuperscript{\textit{1}}}
}
\fontsize{12.0pt}{14.4pt}\selectfont
\begin{tabular*}{\linewidth}{@{\extracolsep{\fill}}lrrrrrr}
\toprule
Design & N & Events & Time & Bound & alpha & Power \\
\midrule\addlinespace[2.5pt]
Fleming-Harrington FH(0, 0) (logrank) & 458.3509 & 321.3931 & 36 & 1.959964 & 0.025 & 0.9 \\
\bottomrule
\end{tabular*}
\begin{minipage}{\linewidth}
\textsuperscript{\textit{1}}Power for Fleming-Harrington test FH(0, 0) (logrank) using method of Yung and Liu.\\
\end{minipage}
\end{table}
\begin{table}[!t]
\caption*{
{\large Bound summary for AHR design} \\
{\small AHR approximations of \textasciitilde{}HR at bound}
}
\fontsize{12.0pt}{14.4pt}\selectfont
\begin{tabular*}{\linewidth}{@{\extracolsep{\fill}}lrrrrr}
\toprule
& & & & \multicolumn{2}{c}{Cumulative boundary crossing probability} \\
\cmidrule(lr){5-6}
Bound & Z & Nominal p\textsuperscript{\textit{1}} & \textasciitilde{}HR at bound\textsuperscript{\textit{2}} & Alternate hypothesis & Null hypothesis \\
\midrule\addlinespace[2.5pt]
\multicolumn{6}{l}{Analysis: 1 Time: 36 N: 476 Events: 291.9 AHR: 0.68 Information fraction: 1} \\[2.5pt]
\midrule\addlinespace[2.5pt]
Efficacy & 1.96 & 0.025 & 0.795 & 0.9 & 0.025 \\
\bottomrule
\end{tabular*}
\begin{minipage}{\linewidth}
\textsuperscript{\textit{1}}One-sided p-value for experimental vs control treatment. Value < 0.5 favors experimental, > 0.5 favors control.\\
\textsuperscript{\textit{2}}Approximate hazard ratio to cross bound.\\
\end{minipage}
\end{table}
\begin{table}[!t]
\caption*{
{\large Bound summary for AHR design} \\
{\small AHR approximations of \textasciitilde{}HR at bound}
}
\fontsize{12.0pt}{14.4pt}\selectfont
\begin{tabular*}{\linewidth}{@{\extracolsep{\fill}}lrrrrr}
\toprule
& & & & \multicolumn{2}{c}{Cumulative boundary crossing probability} \\
\cmidrule(lr){5-6}
Bound & Z & Nominal p\textsuperscript{\textit{1}} & \textasciitilde{}HR at bound\textsuperscript{\textit{2}} & Alternate hypothesis & Null hypothesis \\
\midrule\addlinespace[2.5pt]
\multicolumn{6}{l}{Analysis: 1 Time: 14.9 N: 108 Events: 30 AHR: 0.79 Information fraction: 0.6} \\[2.5pt]
\midrule\addlinespace[2.5pt]
Futility & -1.17 & 0.8792 & 1.5392 & 0.0349 & 0.1208 \\
Efficacy & 2.67 & 0.0038 & 0.3743 & 0.0231 & 0.0038 \\
\midrule\addlinespace[2.5pt]
\multicolumn{6}{l}{Analysis: 2 Time: 19.2 N: 108 Events: 40 AHR: 0.74 Information fraction: 0.8} \\[2.5pt]
\midrule\addlinespace[2.5pt]
Futility & -0.66 & 0.7462 & 1.2359 & 0.0668 & 0.2655 \\
Efficacy & 2.29 & 0.0110 & 0.4812 & 0.0897 & 0.0122 \\
\midrule\addlinespace[2.5pt]
\multicolumn{6}{l}{Analysis: 3 Time: 24.5 N: 108 Events: 50 AHR: 0.71 Information fraction: 1} \\[2.5pt]
\midrule\addlinespace[2.5pt]
Futility & -0.23 & 0.5897 & 1.0670 & 0.1008 & 0.4303 \\
Efficacy & 2.03 & 0.0211 & 0.5595 & 0.2070 & 0.0250 \\
\bottomrule
\end{tabular*}
\begin{minipage}{\linewidth}
\textsuperscript{\textit{1}}One-sided p-value for experimental vs control treatment. Value < 0.5 favors experimental, > 0.5 favors control.\\
\textsuperscript{\textit{2}}Approximate hazard ratio to cross bound.\\
\end{minipage}
\end{table}
\begin{table}[!t]
\caption*{
{\large Bound summary for WLR design} \\
{\small WLR approximation of \textasciitilde{}wHR at bound}
}
\fontsize{12.0pt}{14.4pt}\selectfont
\begin{tabular*}{\linewidth}{@{\extracolsep{\fill}}lrrrrr}
\toprule
& & & & \multicolumn{2}{c}{Cumulative boundary crossing probability} \\
\cmidrule(lr){5-6}
Bound & Z & Nominal p\textsuperscript{\textit{1}} & \textasciitilde{}wHR at bound\textsuperscript{\textit{2}} & Alternate hypothesis & Null hypothesis \\
\midrule\addlinespace[2.5pt]
\multicolumn{6}{l}{Analysis: 1 Time: 36 N: 471.1 Events: 289 AHR: 0.68 Information fraction: 1\textsuperscript{\textit{3}}} \\[2.5pt]
\midrule\addlinespace[2.5pt]
Efficacy & 1.96 & 0.025 & 0.7941 & 0.9 & 0.025 \\
\bottomrule
\end{tabular*}
\begin{minipage}{\linewidth}
\textsuperscript{\textit{1}}One-sided p-value for experimental vs control treatment. Value < 0.5 favors experimental, > 0.5 favors control.\\
\textsuperscript{\textit{2}}Approximate hazard ratio to cross bound.\\
\textsuperscript{\textit{3}}wAHR is the weighted AHR.\\
\end{minipage}
\end{table}
\begin{table}[!t]
\caption*{
{\large Bound summary for WLR design\textsuperscript{\textit{1}}} \\
{\small WLR approximation of \textasciitilde{}wHR at bound}
}
\fontsize{12.0pt}{14.4pt}\selectfont
\begin{tabular*}{\linewidth}{@{\extracolsep{\fill}}lrrrrr}
\toprule
& & & & \multicolumn{2}{c}{Cumulative boundary crossing probability\textsuperscript{\textit{2}}} \\
\cmidrule(lr){5-6}
Bound & Z & Nominal p & \textasciitilde{}wHR at bound\textsuperscript{\textit{3}} & Alternate hypothesis & Null hypothesis \\
\midrule\addlinespace[2.5pt]
\multicolumn{6}{l}{Analysis: 1 Time: 14.9 N: 108 Events: 30 AHR: 0.79 Information fraction: 0.6\textsuperscript{\textit{4}}} \\[2.5pt]
\midrule\addlinespace[2.5pt]
Futility & -1.17 & 0.8798 & 1.5353 & 0.0341 & 0.1202 \\
Efficacy & 2.68 & 0.0037 & 0.3765 & 0.0217 & 0.0037 \\
\midrule\addlinespace[2.5pt]
\multicolumn{6}{l}{Analysis: 2 Time: 19.2 N: 108 Events: 40 AHR: 0.75 Information fraction: 0.8\textsuperscript{\textit{4}}} \\[2.5pt]
\midrule\addlinespace[2.5pt]
Futility & -0.66 & 0.7452 & 1.2319 & 0.0664 & 0.2664 \\
Efficacy & 2.29 & 0.0110 & 0.4846 & 0.0886 & 0.0121 \\
\midrule\addlinespace[2.5pt]
\multicolumn{6}{l}{Analysis: 3 Time: 24.5 N: 108 Events: 50 AHR: 0.71 Information fraction: 1\textsuperscript{\textit{4}}} \\[2.5pt]
\midrule\addlinespace[2.5pt]
Futility & -0.22 & 0.5881 & 1.0650 & 0.1002 & 0.4319 \\
Efficacy & 2.03 & 0.0212 & 0.5631 & 0.2071 & 0.0250 \\
\bottomrule
\end{tabular*}
\begin{minipage}{\linewidth}
\textsuperscript{\textit{1}}this table is generated by gs\_power\_wlr.\\
\textsuperscript{\textit{2}}the crossing probability.\\
\textsuperscript{\textit{3}}approximate weighted hazard ratio to cross bound.\\
\textsuperscript{\textit{4}}wAHR is the weighted AHR.\\
\end{minipage}
\end{table}
\begin{table}[!t]
\caption*{
{\large Bound summary for MaxCombo design} \\
{\small MaxCombo approximation}
}
\fontsize{12.0pt}{14.4pt}\selectfont
\begin{tabular*}{\linewidth}{@{\extracolsep{\fill}}lrrrr}
\toprule
& & & \multicolumn{2}{c}{Cumulative boundary crossing probability} \\
\cmidrule(lr){4-5}
Bound & Z & Nominal p\textsuperscript{\textit{1}} & Alternate hypothesis & Null hypothesis \\
\midrule\addlinespace[2.5pt]
\multicolumn{5}{l}{Analysis: 1 Time: 12 N: 500 Events: 107.4 AHR: 0.84 Event fraction: 0.32\textsuperscript{\textit{2}}} \\[2.5pt]
\midrule\addlinespace[2.5pt]
Futility & -1 & 0.8413 & 0.0293 & 0.0000 \\
Efficacy & 3 & 0.0013 & 0.0175 & 0.0013 \\
\midrule\addlinespace[2.5pt]
\multicolumn{5}{l}{Analysis: 2 Time: 24 N: 500 Events: 246.3 AHR: 0.72 Event fraction: 0.74\textsuperscript{\textit{2}}} \\[2.5pt]
\midrule\addlinespace[2.5pt]
Futility & 0 & 0.5000 & 0.0314 & 0.0000 \\
Efficacy & 2 & 0.0228 & 0.7261 & 0.0233 \\
\midrule\addlinespace[2.5pt]
\multicolumn{5}{l}{Analysis: 3 Time: 36 N: 500 Events: 331.3 AHR: 0.68 Event fraction: 1\textsuperscript{\textit{2}}} \\[2.5pt]
\midrule\addlinespace[2.5pt]
Futility & 1 & 0.1587 & 0.0326 & 0.0000 \\
Efficacy & 1 & 0.1587 & 0.9674 & 0.1956 \\
\bottomrule
\end{tabular*}
\begin{minipage}{\linewidth}
\textsuperscript{\textit{1}}One-sided p-value for experimental vs control treatment. Value < 0.5 favors experimental, > 0.5 favors control.\\
\textsuperscript{\textit{2}}EF is event fraction. AHR is under regular weighted log rank test.\\
\end{minipage}
\end{table}
\begin{table}[!t]
\caption*{
{\large Bound summary of Binary Endpoint} \\
{\small measured by risk difference}
}
\fontsize{12.0pt}{14.4pt}\selectfont
\begin{tabular*}{\linewidth}{@{\extracolsep{\fill}}lrrrrr}
\toprule
& & & & \multicolumn{2}{c}{Cumulative boundary crossing probability} \\
\cmidrule(lr){5-6}
Bound & Z & Nominal p\textsuperscript{\textit{1}} & \textasciitilde{}Risk difference at bound & Alternate hypothesis & Null hypothesis \\
\midrule\addlinespace[2.5pt]
\multicolumn{6}{l}{Analysis: 1 N: 2423.1 Risk difference: 0.05 Information fraction: 1} \\[2.5pt]
\midrule\addlinespace[2.5pt]
Efficacy & 1.96 & 0.025 & 0.0302 & 0.9 & 0.025 \\
\bottomrule
\end{tabular*}
\begin{minipage}{\linewidth}
\textsuperscript{\textit{1}}One-sided p-value for experimental vs control treatment. Value < 0.5 favors experimental, > 0.5 favors control.\\
\end{minipage}
\end{table}
\begin{table}[!t]
\caption*{
{\large Bound summary of Binary Endpoint} \\
{\small measured by risk difference}
}
\fontsize{12.0pt}{14.4pt}\selectfont
\begin{tabular*}{\linewidth}{@{\extracolsep{\fill}}lrrrrr}
\toprule
& & & & \multicolumn{2}{c}{Cumulative boundary crossing probability} \\
\cmidrule(lr){5-6}
Bound & Z & Nominal p\textsuperscript{\textit{1}} & \textasciitilde{}Risk difference at bound & Alternate hypothesis & Null hypothesis \\
\midrule\addlinespace[2.5pt]
\multicolumn{6}{l}{Analysis: 1 N: 40 Risk difference: 0.05 Information fraction: 0.67} \\[2.5pt]
\midrule\addlinespace[2.5pt]
Futility & -1.28 & 0.9000 & -0.1537 & 0.0444 & 0.1000 \\
Efficacy & 3.71 & 0.0001 & 0.4448 & 0.0005 & 0.0001 \\
\midrule\addlinespace[2.5pt]
\multicolumn{6}{l}{Analysis: 2 N: 50 Risk difference: 0.05 Information fraction: 0.83} \\[2.5pt]
\midrule\addlinespace[2.5pt]
Efficacy & 2.51 & 0.0060 & 0.2693 & 0.0204 & 0.0060 \\
\midrule\addlinespace[2.5pt]
\multicolumn{6}{l}{Analysis: 3 N: 60 Risk difference: 0.05 Information fraction: 1} \\[2.5pt]
\midrule\addlinespace[2.5pt]
Efficacy & 1.99 & 0.0231 & 0.1951 & 0.0705 & 0.0238\textsuperscript{\textit{2}} \\
\bottomrule
\end{tabular*}
\begin{minipage}{\linewidth}
\textsuperscript{\textit{1}}One-sided p-value for experimental vs control treatment. Value < 0.5 favors experimental, > 0.5 favors control.\\
\textsuperscript{\textit{2}}Cumulative alpha for final analysis (0.0238) is less than the full alpha (0.025) when the futility bound is non-binding. The smaller value subtracts the probability of crossing a futility bound before crossing an efficacy bound at a later analysis (0.025 - 0.0012 = 0.0238) under the null hypothesis.\\
\end{minipage}
\end{table}
\begin{table}[!t]
\caption*{
{\large Bound Summary} \\
{\small from gs\_power\_wlr}
}
\fontsize{12.0pt}{14.4pt}\selectfont
\begin{tabular*}{\linewidth}{@{\extracolsep{\fill}}lrrrrr}
\toprule
& & & & \multicolumn{2}{c}{Cumulative boundary crossing probability} \\
\cmidrule(lr){5-6}
Bound & Z & Nominal p\textsuperscript{\textit{1}} & \textasciitilde{}wHR at bound\textsuperscript{\textit{2}} & Alternate hypothesis & Null hypothesis \\
\midrule\addlinespace[2.5pt]
\multicolumn{6}{l}{Analysis: 1 Time: 14.9 N: 108 Events: 30 AHR: 0.79 Information fraction: 0.6\textsuperscript{\textit{3}}} \\[2.5pt]
\midrule\addlinespace[2.5pt]
Futility & -1.17 & 0.8798 & 1.5353 & 0.0341 & 0.1202 \\
Efficacy & 2.68 & 0.0037 & 0.3765 & 0.0217 & 0.0037 \\
\midrule\addlinespace[2.5pt]
\multicolumn{6}{l}{Analysis: 2 Time: 19.2 N: 108 Events: 40 AHR: 0.75 Information fraction: 0.8\textsuperscript{\textit{3}}} \\[2.5pt]
\midrule\addlinespace[2.5pt]
Futility & -0.66 & 0.7452 & 1.2319 & 0.0664 & 0.2664 \\
Efficacy & 2.29 & 0.0110 & 0.4846 & 0.0886 & 0.0121 \\
\midrule\addlinespace[2.5pt]
\multicolumn{6}{l}{Analysis: 3 Time: 24.5 N: 108 Events: 50 AHR: 0.71 Information fraction: 1\textsuperscript{\textit{3}}} \\[2.5pt]
\midrule\addlinespace[2.5pt]
Futility & -0.22 & 0.5881 & 1.0650 & 0.1002 & 0.4319 \\
Efficacy & 2.03 & 0.0212 & 0.5631 & 0.2071 & 0.0250 \\
\bottomrule
\end{tabular*}
\begin{minipage}{\linewidth}
\textsuperscript{\textit{1}}One-sided p-value for experimental vs control treatment. Value < 0.5 favors experimental, > 0.5 favors control.\\
\textsuperscript{\textit{2}}Approximate hazard ratio to cross bound.\\
\textsuperscript{\textit{3}}wAHR is the weighted AHR.\\
\end{minipage}
\end{table}
\begin{table}[!t]
\caption*{
{\large Bound summary for WLR design} \\
{\small WLR approximation of \textasciitilde{}wHR at bound}
}
\fontsize{12.0pt}{14.4pt}\selectfont
\begin{tabular*}{\linewidth}{@{\extracolsep{\fill}}lrrrrr}
\toprule
& & & & \multicolumn{2}{c}{Cumulative probability to cross boundaries} \\
\cmidrule(lr){5-6}
Bound & Z & Nominal p\textsuperscript{\textit{1}} & \textasciitilde{}wHR at bound\textsuperscript{\textit{2}} & under H1 & under H0 \\
\midrule\addlinespace[2.5pt]
\multicolumn{6}{l}{Analysis: 1 Time: 14.9 N: 108 Events: 30 AHR: 0.79 Information fraction: 0.6\textsuperscript{\textit{3}}} \\[2.5pt]
\midrule\addlinespace[2.5pt]
Futility & -1.17 & 0.8798 & 1.5353 & 0.0341 & 0.1202 \\
Efficacy & 2.68 & 0.0037 & 0.3765 & 0.0217 & 0.0037 \\
\midrule\addlinespace[2.5pt]
\multicolumn{6}{l}{Analysis: 2 Time: 19.2 N: 108 Events: 40 AHR: 0.75 Information fraction: 0.8\textsuperscript{\textit{3}}} \\[2.5pt]
\midrule\addlinespace[2.5pt]
Futility & -0.66 & 0.7452 & 1.2319 & 0.0664 & 0.2664 \\
Efficacy & 2.29 & 0.0110 & 0.4846 & 0.0886 & 0.0121 \\
\midrule\addlinespace[2.5pt]
\multicolumn{6}{l}{Analysis: 3 Time: 24.5 N: 108 Events: 50 AHR: 0.71 Information fraction: 1\textsuperscript{\textit{3}}} \\[2.5pt]
\midrule\addlinespace[2.5pt]
Futility & -0.22 & 0.5881 & 1.0650 & 0.1002 & 0.4319 \\
Efficacy & 2.03 & 0.0212 & 0.5631 & 0.2071 & 0.0250\textsuperscript{\textit{4}} \\
\bottomrule
\end{tabular*}
\begin{minipage}{\linewidth}
\textsuperscript{\textit{1}}One-sided p-value for experimental vs control treatment. Value < 0.5 favors experimental, > 0.5 favors control.\\
\textsuperscript{\textit{2}}Approximate hazard ratio to cross bound.\\
\textsuperscript{\textit{3}}wAHR is the weighted AHR.\\
\textsuperscript{\textit{4}}Cumulative alpha for final analysis (-Inf) is less than the full alpha (0.025) when the futility bound is non-binding. The smaller value subtracts the probability of crossing a futility bound before crossing an efficacy bound at a later analysis (0.025 - Inf = -Inf) under the null hypothesis.\\
\end{minipage}
\end{table}
\begin{table}[!t]
\caption*{
{\large Bound summary for WLR design\textsuperscript{\textit{1}}} \\
{\small WLR approximation of \textasciitilde{}wHR at bound}
}
\fontsize{12.0pt}{14.4pt}\selectfont
\begin{tabular*}{\linewidth}{@{\extracolsep{\fill}}lrrrrr}
\toprule
& & & & \multicolumn{2}{c}{Cumulative boundary crossing probability\textsuperscript{\textit{2}}} \\
\cmidrule(lr){5-6}
Bound & Z & Nominal p & \textasciitilde{}wHR at bound\textsuperscript{\textit{3}} & Alternate hypothesis & Null hypothesis \\
\midrule\addlinespace[2.5pt]
\multicolumn{6}{l}{Analysis: 1 Time: 14.9 N: 108 Events: 30 AHR: 0.79 Information fraction: 0.6\textsuperscript{\textit{4}}} \\[2.5pt]
\midrule\addlinespace[2.5pt]
Futility & -1.17 & 0.8798 & 1.5353 & 0.0341 & 0.1202 \\
Efficacy & 2.68 & 0.0037 & 0.3765 & 0.0217 & 0.0037 \\
\midrule\addlinespace[2.5pt]
\multicolumn{6}{l}{Analysis: 2 Time: 19.2 N: 108 Events: 40 AHR: 0.75 Information fraction: 0.8\textsuperscript{\textit{4}}} \\[2.5pt]
\midrule\addlinespace[2.5pt]
Futility & -0.66 & 0.7452 & 1.2319 & 0.0664 & 0.2664 \\
Efficacy & 2.29 & 0.0110 & 0.4846 & 0.0886 & 0.0121 \\
\midrule\addlinespace[2.5pt]
\multicolumn{6}{l}{Analysis: 3 Time: 24.5 N: 108 Events: 50 AHR: 0.71 Information fraction: 1\textsuperscript{\textit{4}}} \\[2.5pt]
\midrule\addlinespace[2.5pt]
Futility & -0.22 & 0.5881 & 1.0650 & 0.1002 & 0.4319 \\
Efficacy & 2.03 & 0.0212 & 0.5631 & 0.2071 & 0.0250 \\
\bottomrule
\end{tabular*}
\begin{minipage}{\linewidth}
\textsuperscript{\textit{1}}this table is generated by gs\_power\_wlr.\\
\textsuperscript{\textit{2}}the crossing probability.\\
\textsuperscript{\textit{3}}approximate weighted hazard ratio to cross bound.\\
\textsuperscript{\textit{4}}wAHR is the weighted AHR.\\
\end{minipage}
\end{table}
\begin{table}[!t]
\caption*{
{\large Bound summary for WLR design} \\
{\small WLR approximation of \textasciitilde{}wHR at bound}
}
\fontsize{12.0pt}{14.4pt}\selectfont
\begin{tabular*}{\linewidth}{@{\extracolsep{\fill}}lrrrrr}
\toprule
& & & & \multicolumn{2}{c}{Cumulative boundary crossing probability} \\
\cmidrule(lr){5-6}
Bound & Z & Nominal p\textsuperscript{\textit{1}} & \textasciitilde{}wHR at bound\textsuperscript{\textit{2}} & Alternate hypothesis & Null hypothesis \\
\midrule\addlinespace[2.5pt]
\multicolumn{6}{l}{Analysis: 1 Time: 14.9 N: 108 Events: 30 AHR: 0.79 Information fraction: 0.6\textsuperscript{\textit{3}}} \\[2.5pt]
\midrule\addlinespace[2.5pt]
Efficacy & 2.68 & 0.0037 & 0.3765 & 0.0217 & 0.0037 \\
\midrule\addlinespace[2.5pt]
\multicolumn{6}{l}{Analysis: 2 Time: 19.2 N: 108 Events: 40 AHR: 0.75 Information fraction: 0.8\textsuperscript{\textit{3}}} \\[2.5pt]
\midrule\addlinespace[2.5pt]
Efficacy & 2.29 & 0.0110 & 0.4846 & 0.0886 & 0.0121 \\
\midrule\addlinespace[2.5pt]
\multicolumn{6}{l}{Analysis: 3 Time: 24.5 N: 108 Events: 50 AHR: 0.71 Information fraction: 1\textsuperscript{\textit{3}}} \\[2.5pt]
\midrule\addlinespace[2.5pt]
Efficacy & 2.03 & 0.0212 & 0.5631 & 0.2071 & 0.0250 \\
\bottomrule
\end{tabular*}
\begin{minipage}{\linewidth}
\textsuperscript{\textit{1}}One-sided p-value for experimental vs control treatment. Value < 0.5 favors experimental, > 0.5 favors control.\\
\textsuperscript{\textit{2}}Approximate hazard ratio to cross bound.\\
\textsuperscript{\textit{3}}wAHR is the weighted AHR.\\
\end{minipage}
\end{table}
\begin{table}[!t]
\caption*{
{\large Bound summary for WLR design} \\
{\small WLR approximation of \textasciitilde{}wHR at bound}
}
\fontsize{12.0pt}{14.4pt}\selectfont
\begin{tabular*}{\linewidth}{@{\extracolsep{\fill}}lrrrr}
\toprule
& & & \multicolumn{2}{c}{Cumulative boundary crossing probability} \\
\cmidrule(lr){4-5}
Bound & Nominal p\textsuperscript{\textit{1}} & Z & Alternate hypothesis & Null hypothesis \\
\midrule\addlinespace[2.5pt]
\multicolumn{5}{l}{Analysis: 1 Time: 14.9 N: 108 Events: 30 AHR: 0.79 Information fraction: 0.6\textsuperscript{\textit{2}}} \\[2.5pt]
\midrule\addlinespace[2.5pt]
Futility & 0.8798 & -1.17 & 0.0341 & 0.1202 \\
Efficacy & 0.0037 & 2.68 & 0.0217 & 0.0037 \\
\midrule\addlinespace[2.5pt]
\multicolumn{5}{l}{Analysis: 2 Time: 19.2 N: 108 Events: 40 AHR: 0.75 Information fraction: 0.8\textsuperscript{\textit{2}}} \\[2.5pt]
\midrule\addlinespace[2.5pt]
Futility & 0.7452 & -0.66 & 0.0664 & 0.2664 \\
Efficacy & 0.0110 & 2.29 & 0.0886 & 0.0121 \\
\midrule\addlinespace[2.5pt]
\multicolumn{5}{l}{Analysis: 3 Time: 24.5 N: 108 Events: 50 AHR: 0.71 Information fraction: 1\textsuperscript{\textit{2}}} \\[2.5pt]
\midrule\addlinespace[2.5pt]
Futility & 0.5881 & -0.22 & 0.1002 & 0.4319 \\
Efficacy & 0.0212 & 2.03 & 0.2071 & 0.0250 \\
\bottomrule
\end{tabular*}
\begin{minipage}{\linewidth}
\textsuperscript{\textit{1}}One-sided p-value for experimental vs control treatment. Value < 0.5 favors experimental, > 0.5 favors control.\\
\textsuperscript{\textit{2}}wAHR is the weighted AHR.\\
\end{minipage}
\end{table}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.