Nothing
#' @templateVar MODEL_FUNCTION alt_gamma
#' @templateVar CONTRIBUTOR \href{https://github.com/lilihub}{Lili Zhang} <\email{lili.zhang27@@mail.dcu.ie}>
#' @templateVar TASK_NAME Aversive Learning Task
#' @templateVar TASK_CODE alt
#' @templateVar TASK_CITE (Browning et al., 2015)
#' @templateVar MODEL_NAME Rescorla-Wagner (Gamma) Model
#' @templateVar MODEL_CODE gamma
#' @templateVar MODEL_CITE
#' @templateVar MODEL_TYPE Hierarchical
#' @templateVar DATA_COLUMNS "subjID", "choice", "outcome", "bluePunish", "orangePunish"
#' @templateVar PARAMETERS \code{A} (learning rate), \code{beta} (inverse temperature), \code{gamma} (risk preference)
#' @templateVar REGRESSORS
#' @templateVar POSTPREDS "y_pred"
#' @templateVar LENGTH_DATA_COLUMNS 5
#' @templateVar DETAILS_DATA_1 \item{subjID}{A unique identifier for each subject in the data-set.}
#' @templateVar DETAILS_DATA_2 \item{choice}{Integer value representing the option chosen on the given trial (blue == 1, orange == 2).}
#' @templateVar DETAILS_DATA_3 \item{outcome}{Integer value representing the outcome of the given trial (punishment == 1, and non-punishment == 0).}
#' @templateVar DETAILS_DATA_4 \item{bluePunish}{Floating point value representing the magnitude of punishment for blue on that trial (e.g., 10, 97)}
#' @templateVar DETAILS_DATA_5 \item{orangePunish}{Floating point value representing the magnitude of punishment for orange on that trial (e.g., 23, 45)}
#' @templateVar LENGTH_ADDITIONAL_ARGS 0
#'
#' @template model-documentation
#'
#' @export
#' @include hBayesDM_model.R
#' @include preprocess_funcs.R
#' @references
#' Browning, M., Behrens, T. E., Jocham, G., O'reilly, J. X., & Bishop, S. J. (2015). Anxious individuals have difficulty learning the causal statistics of aversive environments. Nature neuroscience, 18(4), 590.
#'
alt_gamma <- hBayesDM_model(
task_name = "alt",
model_name = "gamma",
model_type = "",
data_columns = c("subjID", "choice", "outcome", "bluePunish", "orangePunish"),
parameters = list(
"A" = c(0, 0.5, 1),
"beta" = c(0, 1, 20),
"gamma" = c(0, 1, 10)
),
regressors = NULL,
postpreds = c("y_pred"),
preprocess_func = alt_preprocess_func)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.