default_recipe_blueprint: Default recipe blueprint

Description Usage Arguments Value Mold Forge Examples

View source: R/blueprint-recipe-default.R

Description

This pages holds the details for the recipe preprocessing blueprint. This is the blueprint used by default from mold() if x is a recipe.

Usage

1
2
3
4
5
6
7
8
default_recipe_blueprint(
  intercept = FALSE,
  allow_novel_levels = FALSE,
  fresh = TRUE
)

## S3 method for class 'recipe'
mold(x, data, ..., blueprint = NULL)

Arguments

intercept

A logical. Should an intercept be included in the processed data? This information is used by the process function in the mold and forge function list.

allow_novel_levels

A logical. Should novel factor levels be allowed at prediction time? This information is used by the clean function in the forge function list, and is passed on to scream().

fresh

Should already trained operations be re-trained when prep() is called?

x

An unprepped recipe created from recipes::recipe().

data

A data frame or matrix containing the outcomes and predictors.

...

Not used.

blueprint

A preprocessing blueprint. If left as NULL, then a default_recipe_blueprint() is used.

Value

For default_recipe_blueprint(), a recipe blueprint.

Mold

When mold() is used with the default recipe blueprint:

Forge

When forge() is used with the default recipe blueprint:

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
library(recipes)

# ---------------------------------------------------------------------------
# Setup

train <- iris[1:100,]
test <- iris[101:150,]

# ---------------------------------------------------------------------------
# Recipes example

# Create a recipe that logs a predictor
rec <- recipe(Species ~ Sepal.Length + Sepal.Width, train) %>%
   step_log(Sepal.Length)

processed <- mold(rec, train)

# Sepal.Length has been logged
processed$predictors

processed$outcomes

# The underlying blueprint is a prepped recipe
processed$blueprint$recipe

# Call forge() with the blueprint and the test data
# to have it preprocess the test data in the same way
forge(test, processed$blueprint)

# Use `outcomes = TRUE` to also extract the preprocessed outcome!
# This logged the Sepal.Length column of `new_data`
forge(test, processed$blueprint, outcomes = TRUE)

# ---------------------------------------------------------------------------
# With an intercept

# You can add an intercept with `intercept = TRUE`
processed <- mold(rec, train, blueprint = default_recipe_blueprint(intercept = TRUE))

processed$predictors

# But you also could have used a recipe step
rec2 <- step_intercept(rec)

mold(rec2, iris)$predictors

# ---------------------------------------------------------------------------
# Non standard roles

# If you have custom recipe roles, they are processed and returned in
# the `$extras$roles` slot of the return value of `mold()` and `forge()`.

rec_roles <- recipe(train) %>%
  update_role(Sepal.Width, new_role = "predictor") %>%
  update_role(Species, new_role = "outcome") %>%
  update_role(Sepal.Length, new_role = "custom_role") %>%
  update_role(Petal.Length, new_role = "custom_role2")

processed_roles <- mold(rec_roles, train)

processed_roles$extras

forge(test, processed_roles$blueprint)

hardhat documentation built on July 8, 2020, 7:25 p.m.