Description Usage Arguments Value Note Author(s) References See Also Examples
Fits hierarchical semiparametric regression model to t-statistics
| 1 2 3 4 5 6 7 8 9 | penLik.EMNewton(tstat, x, df, spar = c(10^seq(-1,8,length=30), Inf),
        nknots = n.knots(length(tstat)), starts, 
	tuning.method = c("NIC", "CV"), cv.fold = 5, pen.order=1,
	poly.degree=pen.order*2-1, optim.method =
	c("nlminb", "BFGS", "CG", "L-BFGS-B", "Nelder-Mead", "SANN", "NR"), 
        logistic.correction = TRUE, em.iter.max = 10, 
        em.beta.iter.max = 1, newton.iter.max = 1500, 
        scale.conv = 0.001, lfdr.conv = 0.001, NPLL.conv = 0.001, 
        debugging = FALSE, plotit = TRUE, ...)
 | 
| tstat | A numeric vector t-statistics | 
| x |  A numeric matrix of covariates, with  | 
| df | A numeric scalar or vector of degrees of freedom | 
| spar | A numeric vector of smoothing parameter lambda | 
| nknots | A numeric scalar of number of knots | 
| starts | An optional numeric vector of starting values | 
| tuning.method |  Either  | 
| cv.fold |  A numeric scalar of the fold for cross-validation. Ignored if  | 
| pen.order | A numeric scalar of the order of derivatives of which squared integration will be used as roughness penalty. | 
| poly.degree | A numeric scalar of the degree of B-splines. | 
| optim.method | A character scalar specifying the method of optimization. | 
| logistic.correction | A logical scalar specifying whether or not the effective number of parameters should be corrected using a logistic curve | 
| em.iter.max |  A numeric scalar specifying the maximum number of EM iterations. If being  | 
| em.beta.iter.max |  A numeric scalar specifying the maximum number of iterations in the maximization step for the beta parameters in the EM algorithm. If being  | 
| newton.iter.max | A numeric scalar specifying the maximum number of iterations in Newton method. | 
| scale.conv | A small numeric scalar specifying the convergence criterion for the scale parameter. | 
| lfdr.conv | A small numeric scalar specifying the convergence criterion for the local false discovery rates. | 
| NPLL.conv | A small numeric scalar specifying the convergence criretion for the negative penalized log likelhood. | 
| debugging |  A logical scalar. If  | 
| plotit | A locgical scalr specifying whether a plot should be generated. | 
| ... | Currently not used. | 
An list of class hisemit:
| lfdr: | A numeric vector of local false discovery rates. | 
| model | A  list of  | 
| scale.fact: | A list with 
  where  | 
| pi0: | A numeric vector of mixing proportions for the central t component | 
| tuning: | A list with 
 | 
| spar: | A list with 
 | 
| enp: | A list with 
 | 
| fit: | A list with 
 | 
| NPLL: | A list with 
 | 
When spar is too small, the results need to be treated cautiously. It is advisable to plot the results as a check.
Long Qu rtistician@gmail.com
Long Qu, Dan Nettleton, Jack Dekkers (2012) A hierarchical semiparametric model for incorporating inter-gene relationship information for analysis of genomic data. Biometrics, 68(4):1168-1177
plot.hisemit, fitted.hisemit, coef.hisemit, 
vcov.hisemit, residuals.hisemit, logLik.hisemit, 
confint.hisemit, plot.hisemit, 
hisemi-package, pi0-package
| 1 | # See the examples for the hisemi-package.
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.