Nothing
library(hmmTMB)
set.seed(5738)
###################
## Simulate data ##
###################
# Generate two covariates (random walk)
n_sim <- 1e4
covs <- data.frame(ID = 1,
step = NA,
count = NA,
x1 = cumsum(rnorm(n_sim, 0, 0.1)),
x2 = cumsum(rnorm(n_sim, 0, 0.1)))
# Create observation model
n_states <- 2
dists <- list(step = dist_gamma,
count = dist_pois)
par <- list(step = list(shape = c(1, 1),
scale = c(1, 10)),
count = list(lambda = c(1, 10)))
obs <- Observation$new(data = covs, dists = dists,
n_states = n_states, par = par)
# Create state process model
struct <- matrix(c(".", "~ x1 + x2",
"~ x2", "."),
ncol = 2, byrow = TRUE)
par_hid0 <- c(-1.5, 0.2, -0.3, -3, 0.5)
hid <- MarkovChain$new(n_states = 2, formula = struct,
data = covs)
hid$update_coeff_fe(par_hid0)
# Create HMM object and simulate data
mod <- HMM$new(obs = obs, hid = hid)
sim <- mod$simulate(n = n_sim, data = covs)
###############
## Fit model ##
###############
# Initial parameters for estimation
par0 <- list(step = list(shape = c(0.5, 2),
scale = c(2, 8)),
count = list(lambda = c(3, 7)))
obs2 <- Observation$new(data = sim, dists = dists,
n_states = n_states, par = par)
hid2 <- MarkovChain$new(n_states = 2, formula = struct, data = sim)
mod2 <- HMM$new(obs = obs2, hid = hid2)
mod2$fit(silent = FALSE)
# Estimated observation parameters
mod2$obs()$par()
# Estimated parameters of the state process
mod2$hid()$coeff_fe()
# Compare estimated states and true states
s <- mod2$viterbi()
table(s == attr(sim, "state"))/n_sim
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.