Nothing
# In this test we compare doIMRMC_java that uses the java engine
# to doIMRMC that uses R code
# This is the default configuration from the simulation software.
# To test the robustness of the software, we change the data as follows:
# We remove some observations from the dataset so that it is not fully crossed.
# We delete the first reader from modality A.
# We delete the first case from modality B.
# We rename and reorder some data.
library(testthat)
library(iMRMC)
testthat::context("doIMRMC_R3")
# Simulate data ###############################################################
# initialize the random number generator
init.lecuyerRNG(stream = 3)
# Create a sample configuration file
config <- sim.gRoeMetz.config()
# Simulate an MRMC ROC data set
dFrame.imrmc <- sim.gRoeMetz(config)
dFrame.imrmc$modalityID <- as.character(dFrame.imrmc$modalityID)
dFrame.imrmc$readerID <- as.character(dFrame.imrmc$readerID)
dFrame.imrmc$caseID <- as.character(dFrame.imrmc$caseID)
# Delete some data to create "arbitrary" study design
del = sample(100:880,100)
dFrame.imrmc <- dFrame.imrmc[-del, ]
# Delete the first reader from modality A
dFrame.imrmc <- dFrame.imrmc[!(
dFrame.imrmc$modalityID == "testA" &
dFrame.imrmc$readerID == "reader1"), ]
# Delete the first case from modality B
dFrame.imrmc <- dFrame.imrmc[!(
dFrame.imrmc$modalityID == "testB" &
dFrame.imrmc$caseID == "negCase1"), ]
# Rename some negative cases and resort
# This puts the truth and reader data of the renamed cases
# at the bottom of the data frame
for (i in 1:nrow(dFrame.imrmc)) {
dFrame.imrmc[i, "caseID"] <-
sub("negCase1", "x-negCase1", dFrame.imrmc[i, "caseID"])
}
index <- order(dFrame.imrmc[, "caseID"])
dFrame.imrmc <- dFrame.imrmc[index, ]
# Process data ###############################################################
# Analyze the MRMC ROC data using new R code
# Processing time before BDG
# user system elapsed
# 3.36 0.81 4.17
# source(file.path("R", "iMRMC_R.R"))
start.time <- proc.time()
result_doIMRMC_current <- doIMRMC(dFrame.imrmc)
end.time <- proc.time()
print("Runtime for R code")
print(end.time - start.time)
# Analyze the MRMC ROC data with legacy code
saveData <- FALSE
if (saveData) {
# Results from legacy code are not available or need to be updated
start.time <- proc.time()
# Processing time
# user system elapsed
# 0.07 0.04 3.17
targetTest3 <- iMRMC::doIMRMC_java(dFrame.imrmc)
save(targetTest3,
file = file.path("tests", "testthat", "test_doIMRMC_R3.rda"))
end.time <- proc.time()
print("Runtime for legacy code created")
print(end.time - start.time)
browser()
} else {
# Results from legacy code need to be read from the package
# There are two modes for running: standard and test
# The working directory when running in standard mode is the package root
temp <- list.files(
path = file.path("tests", "testthat", "."),
pattern = "test_doIMRMC_R3.rda")
if (length(temp) > 0) {
if (temp == "test_doIMRMC_R3.rda")
load(file.path("tests", "testthat", "test_doIMRMC_R3.rda"))
}
# The working directory when running in test mode is the tests/testthat directory
temp <- list.files(
path = ".",
pattern = "test_doIMRMC_R3.rda")
if (length(temp) > 0) {
if ( temp == "test_doIMRMC_R3.rda")
load(file.path(".", "test_doIMRMC_R3.rda"))
}
}
result_doIMRMC_target <- targetTest3
# perReader output full #############################################
target <- result_doIMRMC_target$perReader
current <- result_doIMRMC_current$perReader
# The target result has 28 variables/columns
# The first three variables are date dependent and not part of the current output - Remove
# Variables 15 through 28 of target results are not part of the current output - Remove
target <- result_doIMRMC_target$perReader[,4:14]
# Reader 1 has no observations in modality testA
# Reader 1 is not part of the current output: Remove
index.delete <- target$N0 >= 2
target <- target[index.delete, ]
index.delete <- target$N1 >= 2
target <- target[index.delete, ]
rownames(target) <- NULL
# R code has 9 digits significance
# Java code has 8 digits significance
# The reason is that the Java function reads and writes files.
testthat::test_that(
"doIMRMC perReader output does not change", {
testthat::expect_equal(target, current,tolerance = 1e-6)
}
)
# Ustat output ###############
target = result_doIMRMC_target$Ustat[,4:24]
current = result_doIMRMC_current$Ustat
testthat::test_that(
"doIMRMC Ustat output does not change", {
testthat::expect_equal(target, current)
}
)
# MLEstat output ###############
target = result_doIMRMC_target$MLEstat[,4:24]
current = result_doIMRMC_current$MLEstat
testthat::test_that(
"doIMRMC MLEstat output does not change", {
testthat::expect_equal(target, current)
}
)
# varDecomp$BDG #############################################################
target <- result_doIMRMC_target$varDecomp$BDG
current <- result_doIMRMC_current$varDecomp$BDG
# Current has new simpler format
# Reduce target to this format
target$Ustat$comp <- target$Ustat$comp$testA.testB
rownames(target$Ustat$comp) <- NULL
target$Ustat$coeff <- target$Ustat$coeff$testA.testB
rownames(target$Ustat$coeff) <- NULL
target$MLE$comp <- target$MLE$comp$testA.testB
rownames(target$MLE$comp) <- NULL
target$MLE$coeff <- target$MLE$coeff$testA.testB
rownames(target$MLE$coeff) <- NULL
# Current does not have columns modalityID.1 and modalityID.2
current$Ustat$comp <- deleteCol(current$Ustat$comp, "modalityID.1")
current$Ustat$comp <- deleteCol(current$Ustat$comp, "modalityID.2")
current$Ustat$coeff <- deleteCol(current$Ustat$coeff, "modalityID.1")
current$Ustat$coeff <- deleteCol(current$Ustat$coeff, "modalityID.2")
current$MLE$comp <- deleteCol(current$MLE$comp, "modalityID.1")
current$MLE$comp <- deleteCol(current$MLE$comp, "modalityID.2")
current$MLE$coeff <- deleteCol(current$MLE$coeff, "modalityID.1")
current$MLE$coeff <- deleteCol(current$MLE$coeff, "modalityID.2")
# Current coefficients yield the covariance.
# Target coefficients yield 2*covariance.
current$Ustat$coeff[3, ] <- 2 * current$Ustat$coeff[3, ]
current$MLE$coeff[3, ] <- 2 * current$MLE$coeff[3, ]
# R code has 7 digits significance
# Java code has 6 digits significance
# The reason is that the Java function reads and writes files.
testthat::test_that(
"doIMRMC varcomp-BDG output does not change", {
testthat::expect_equal(target, current,tolerance = 1e-4)
}
)
# varDecomp$BCK #############################################################
target <- result_doIMRMC_target$varDecomp$BCK
current <- result_doIMRMC_current$varDecomp$BCK
# Current has new simpler format
# Reduce target to this format
target$Ustat$comp <- target$Ustat$comp$testA.testB
rownames(target$Ustat$comp) <- NULL
target$Ustat$coeff <- target$Ustat$coeff$testA.testB
rownames(target$Ustat$coeff) <- NULL
target$MLE$comp <- target$MLE$comp$testA.testB
rownames(target$MLE$comp) <- NULL
target$MLE$coeff <- target$MLE$coeff$testA.testB
rownames(target$MLE$coeff) <- NULL
# Current does not have columns modalityID.1 and modalityID.2
current$Ustat$comp <- deleteCol(current$Ustat$comp, "modalityID.1")
current$Ustat$comp <- deleteCol(current$Ustat$comp, "modalityID.2")
current$Ustat$coeff <- deleteCol(current$Ustat$coeff, "modalityID.1")
current$Ustat$coeff <- deleteCol(current$Ustat$coeff, "modalityID.2")
current$MLE$comp <- deleteCol(current$MLE$comp, "modalityID.1")
current$MLE$comp <- deleteCol(current$MLE$comp, "modalityID.2")
current$MLE$coeff <- deleteCol(current$MLE$coeff, "modalityID.1")
current$MLE$coeff <- deleteCol(current$MLE$coeff, "modalityID.2")
# Current coefficients yield the covariance.
# Target coefficients yield 2*covariance.
current$Ustat$coeff[3, ] <- 2 * current$Ustat$coeff[3, ]
current$MLE$coeff[3, ] <- 2 * current$MLE$coeff[3, ]
# R code has 7 digits significance
# Java code has 6 digits significance
# The reason is that the Java function reads and writes files.
testthat::test_that(
"doIMRMC varcomp-BCK output does not change", {
testthat::expect_equal(target, current,tolerance = 1e-4)
}
)
# ROC ###############
target <- result_doIMRMC_target$ROC
current <- result_doIMRMC_current$ROC
# ROC per-reader visual test
plot(current$testA.reader2$fpf,
current$testA.reader2$tpf, type = "l")
lines(target$`testA: reader2`$fpf,
target$`testA: reader2`$tpf, lty = 2)
# ROC pooled-readers visual test
plot(current$testA.pooled$fpf,
current$testA.pooled$tpf, type = "l")
lines(target$`testA: Pooled Average`$fpf,
target$`testA: Pooled Average`$tpf, lty = 2)
# ROC diagonal average visual test
plot(current$testA.diagonalAvg$fpf,
current$testA.diagonalAvg$tpf, type = "l")
lines(target$`testA: Diagonal Average`$fpf,
target$`testA: Diagonal Average`$tpf, lty = 2)
# ROC vertical average visual test
plot(current$testA.verticalAvg$fpf,
current$testA.verticalAvg$tpf, type = "l")
lines(target$`testA: Vertical Average`$fpf,
target$`testA: Vertical Average`$tpf, lty = 2)
# ROC horizontal average test
plot(current$testA.horizontalAvg$fpf,
current$testA.horizontalAvg$tpf, type = "l")
lines(target$`testA: Horizontal Average`$fpf,
target$`testA: Horizontal Average`$tpf, lty = 2)
# plot(current$testB.reader1$fpf,
# current$testB.reader1$tpf)
# lines(current$testB.reader2$fpf,
# current$testB.reader2$tpf)
# lines(current$testB.reader3$fpf,
# current$testB.reader3$tpf)
# lines(current$testB.reader4$fpf,
# current$testB.reader4$tpf)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.