Nothing
#' @title Performance Measures with PCA pre-processing
#' @description getMetricsPCA allows to obtain performance measures from Confusion Matrix for algorithms with PCA pre-processing,it returns a data frame containing performance measures from the confusion matrix given by the \code{caret} package when algorithms have been run with PCA pre-processing.
#' @param y expression. The class variable.
#' @param yhat expression. The vector of predicted values.
#' @param classtype character or numeric. The number of levels in \code{y}.
#' @param model expression. The model object to which output of the model has been assigned.
#' @return Outputs an object with performance measures calculated from the confusion matrix given by the \code{caret} package. A data frame is the resulting output with the first column giving the name of the performance measure, and the second column giving the corresponding value.
#' @details Works with target variables that have two, three, four, six or eight classes. Similar to \code{\link[icardaFIGSr]{getMetrics}} but used in the case where models have been run with PCA specified as an option for the \code{preProcess} argument in the \code{train} function of \code{caret}.
#' @author Khadija Aziz, Zainab Azough, Zakaria Kehel, Bancy Ngatia
#' @examples
#' if(interactive()){
#' # Obtain predictions from several previously run models
#' dataX <- subset(data, select = -y)
#' pred.knn <- predict(model.knn, newdata = dataX)
#' pred.rf <- predict(model.rf, newdata = dataX)
#'
#' # Get metrics for several algorithms
#' metrics.knn <- getMetricsPCA(y = data$y, yhat = pred.knn,
#' classtype = 2, model = model.knn)
#' metrics.rf <- getMetricsPCA(y = data$y, yhat = pred.rf,
#' classtype = 2, model = model.rf)
#'
#' # Indexing for 2-class models to remove extra column with
#' # names of performance measures
#' metrics.all <- cbind(metrics.knn, metrics.rf[ , 2])
#'
#' # No indexing needed for 3-, 4-, 6- or 8-class models
#' metrics.all <- cbind(metrics.knn, metrics.rf)
#' }
#' @seealso
#' \code{\link[caret]{confusionMatrix}},
#' \code{\link[caret]{predict.train}}
#' @rdname getMetricsPCA
#' @export
#' @importFrom caret confusionMatrix predict.train
getMetricsPCA <- function(yhat, y, classtype, model) {
cm = caret::confusionMatrix(y, caret::predict.train(model, yhat))
accu = data.frame(measures = "Accuracy", values = format(data.frame(cm$overall)[1, ], digits = 3))
lcl = format(data.frame(cm$overall)[3, ], digits = 3)
ucl = format(data.frame(cm$overall)[4, ], digits = 3)
ci = data.frame(measures = "95% CI", values = paste0("(", lcl, ", ", ucl, ")"))
nir = data.frame(measures = "No Information Rate", values = format(data.frame(cm$overall)[5, ], digits = 3))
pval = data.frame(measures = "P-Value [Acc > NIR]", values = data.frame(cm$overall)[6, ])
kap = data.frame(measures = "Kappa", values = format(data.frame(cm$overall)[2, ], digits = 3))
if (length(yhat) == length(y)){
if( classtype == 2) {
s = data.frame(format(data.frame(cm$byClass)[1:2, 1], digits = 3))
rownames(s) <- c("Sensitivity", "Specificity")
colnames(s) <- "1"
}
else {
sensitivity <- as.data.frame(format(cm$byClass[,1],digits = 3))
rownames(sensitivity) <- paste("Sensitivity",sprintf("Class %s",seq(1:classtype)), sep = " ")
colnames(sensitivity) <- "Metrics"
specificity <- as.data.frame(format(cm$byClass[,2],digits = 3))
rownames(specificity) <- paste("Specificity",sprintf("Class %s",seq(1:classtype)),sep = " ")
colnames(specificity) <- "Metrics"
recall <- as.data.frame(format(cm$byClass[,6],digits = 3))
rownames(recall) <- paste("Recall",sprintf("Class %s",seq(1:classtype)),sep = " ")
colnames(recall) <- "Metrics"
balancedAccuracy <- as.data.frame(format(cm$byClass[,11],digits = 3))
rownames(balancedAccuracy) <- paste("balanced Accuracy",sprintf("Class %s",seq(1:classtype)),sep = " ")
colnames(balancedAccuracy) <- "Metrics"
s <- rbind(sensitivity,specificity,recall,balancedAccuracy)
}
table1 = as.data.frame.matrix(cm$table)
measures = rbind(accu[1], ci[1], nir[1], pval[1], kap[1])
values = rbind(as.character(as.factor(accu$values)), as.character(as.factor(ci$values)), as.character(as.factor(nir$values)), format(as.numeric(as.character(pval$values), 3)), as.character(as.factor(kap$values)))
metrics.df = as.data.frame(values)
row.names(metrics.df)<- measures$measures
colnames(metrics.df) <- "Metrics"
metrics.df2 = rbind(metrics.df,s)
metrics.df3 <- NULL
metrics.df3$Metrics <- metrics.df2
metrics.df3$CM <- table1
return(metrics.df3)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.