View source: R/all.R View source: R/d.binormal.R
d.binormal | R Documentation |
Compute the log-density for parameterized bivariate Gaussian distribution N(mu, mu, sigma, sigma, rho).
d.binormal(z.1, z.2, mu, sigma, rho)
z.1 |
a numerical data vector on coordinate 1. |
z.2 |
a numerical data vector on coordinate 1. |
mu |
mean |
sigma |
standard deviation |
rho |
correlation coefficient |
Log density of bivariate Gaussian distribution N(mu, mu, sigma, sigma, rho).
Qunhua Li
Q. Li, J. B. Brown, H. Huang and P. J. Bickel. (2011) Measuring reproducibility of high-throughput experiments. Annals of Applied Statistics, Vol. 5, No. 3, 1752-1779.
z.1 <- rnorm(500, 3, 1) rho <- 0.8 ## The component with higher values is correlated with correlation coefficient=0.8 z.2 <- rnorm(500, 3 + 0.8*(z.1-3), (1-rho^2)) mu <- 3 sigma <- 1 den.z <- d.binormal(z.1, z.2, mu, sigma, rho) den.z
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.