d.binormal: Log density of bivariate Gaussian distribution with symmetric...

View source: R/all.R View source: R/d.binormal.R

d.binormalR Documentation

Log density of bivariate Gaussian distribution with symmetric marginals

Description

Compute the log-density for parameterized bivariate Gaussian distribution N(mu, mu, sigma, sigma, rho).

Usage

d.binormal(z.1, z.2, mu, sigma, rho)

Arguments

z.1

a numerical data vector on coordinate 1.

z.2

a numerical data vector on coordinate 1.

mu

mean

sigma

standard deviation

rho

correlation coefficient

Value

Log density of bivariate Gaussian distribution N(mu, mu, sigma, sigma, rho).

Author(s)

Qunhua Li

References

Q. Li, J. B. Brown, H. Huang and P. J. Bickel. (2011) Measuring reproducibility of high-throughput experiments. Annals of Applied Statistics, Vol. 5, No. 3, 1752-1779.

Examples


z.1 <- rnorm(500, 3, 1)
rho <- 0.8

## The component with higher values is correlated with correlation coefficient=0.8 
z.2 <- rnorm(500, 3 + 0.8*(z.1-3), (1-rho^2))
mu <- 3
sigma <- 1
den.z <- d.binormal(z.1, z.2, mu, sigma, rho)

den.z

idr documentation built on June 21, 2022, 9:05 a.m.