View source: R/all.R View source: R/loglik.2binormal.R
loglik.2binormal | R Documentation |
Compute the log-likelihood for parameterized bivariate 2-component Gaussian mixture models with (1-p)N(0, 0, 1, 1, 0) + pN(mu, mu, sigma, sigma, rho).
loglik.2binormal(z.1, z.2, mu, sigma, rho, p)
z.1 |
a numerical data vector on coordinate 1. |
z.2 |
a numerical data vector on coordinate 1. |
mu |
mean for the reproducible component. |
sigma |
standard deviation of the reproducible component. |
rho |
correlation coefficient of the reproducible component. |
p |
mixing proportion of the reproducible component. |
Log-likelihood of the bivariate 2-component Gaussian mixture models (1-p)N(0, 0, 1, 1, 0) + N(mu, mu, sigma, sigma, rho)$.
Qunhua Li
Q. Li, J. B. Brown, H. Huang and P. J. Bickel. (2011) Measuring reproducibility of high-throughput experiments. Annals of Applied Statistics, Vol. 5, No. 3, 1752-1779.
m.step.2normal
, e.step.normal
, est.IDR
z.1 <- c(rnorm(500, 0, 1), rnorm(500, 3, 1)) rho <- 0.8 ## The component with higher values is correlated with correlation coefficient=0.8 z.2 <- c(rnorm(500, 0, 1), rnorm(500, 3 + 0.8*(z.1[501:1000]-3), (1-rho^2))) ## Starting values mu <- 3 sigma <- 1 rho <- 0.85 p <- 0.55 ## The function is currently defined as loglik <- loglik.2binormal(z.1, z.2, mu, sigma, rho, p) loglik
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.