hits_scores | R Documentation |
The hub scores of the vertices are defined as the principal eigenvector
of A A^T
, where A
is the adjacency matrix of the
graph.
hits_scores(
graph,
...,
scale = TRUE,
weights = NULL,
options = arpack_defaults()
)
graph |
The input graph. |
... |
These dots are for future extensions and must be empty. |
scale |
Logical scalar, whether to scale the result to have a maximum score of one. If no scaling is used then the result vector has unit length in the Euclidean norm. |
weights |
Optional positive weight vector for calculating weighted
scores. If the graph has a |
options |
A named list, to override some ARPACK options. See
|
Similarly, the authority scores of the vertices are defined as the principal
eigenvector of A^T A
, where A
is the adjacency matrix of
the graph.
For undirected matrices the adjacency matrix is symmetric and the hub scores are the same as authority scores.
A named list with members:
hub |
The hub score of the vertices. |
authority |
The authority score of the vertices. |
value |
The corresponding eigenvalue of the calculated principal eigenvector. |
options |
Some information about the ARPACK computation, it has
the same members as the |
igraph_hub_and_authority_scores()
.
J. Kleinberg. Authoritative sources in a hyperlinked environment. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1998. Extended version in Journal of the ACM 46(1999). Also appears as IBM Research Report RJ 10076, May 1997.
eigen_centrality()
for eigenvector centrality,
page_rank()
for the Page Rank scores. arpack()
for
the underlining machinery of the computation.
Centrality measures
alpha_centrality()
,
authority_score()
,
betweenness()
,
closeness()
,
diversity()
,
eigen_centrality()
,
harmonic_centrality()
,
page_rank()
,
power_centrality()
,
spectrum()
,
strength()
,
subgraph_centrality()
## An in-star
g <- make_star(10)
hits_scores(g)
## A ring
g2 <- make_ring(10)
hits_scores(g2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.