View source: R/decomposition.R
| is_chordal | R Documentation |
A graph is chordal (or triangulated) if each of its cycles of four or more nodes has a chord, which is an edge joining two nodes that are not adjacent in the cycle. An equivalent definition is that any chordless cycles have at most three nodes.
is_chordal(
graph,
alpha = NULL,
alpham1 = NULL,
fillin = FALSE,
newgraph = FALSE
)
graph |
The input graph. It may be directed, but edge directions are ignored, as the algorithm is defined for undirected graphs. |
alpha |
Numeric vector, the maximal chardinality ordering of the
vertices. If it is |
alpham1 |
Numeric vector, the inverse of |
fillin |
Logical scalar, whether to calculate the fill-in edges. |
newgraph |
Logical scalar, whether to calculate the triangulated graph. |
The chordality of the graph is decided by first performing maximum
cardinality search on it (if the alpha and alpham1 arguments
are NULL), and then calculating the set of fill-in edges.
The set of fill-in edges is empty if and only if the graph is chordal.
It is also true that adding the fill-in edges to the graph makes it chordal.
A list with three members:
chordal |
Logical scalar, it is
|
fillin |
If requested,
then a numeric vector giving the fill-in edges. |
newgraph |
If requested, then the triangulated graph, an |
Gabor Csardi csardi.gabor@gmail.com
Robert E Tarjan and Mihalis Yannakakis. (1984). Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal of Computation 13, 566–579.
max_cardinality()
Other chordal:
max_cardinality()
## The examples from the Tarjan-Yannakakis paper
g1 <- graph_from_literal(
A - B:C:I, B - A:C:D, C - A:B:E:H, D - B:E:F,
E - C:D:F:H, F - D:E:G, G - F:H, H - C:E:G:I,
I - A:H
)
max_cardinality(g1)
is_chordal(g1, fillin = TRUE)
g2 <- graph_from_literal(
A - B:E, B - A:E:F:D, C - E:D:G, D - B:F:E:C:G,
E - A:B:C:D:F, F - B:D:E, G - C:D:H:I, H - G:I:J,
I - G:H:J, J - H:I
)
max_cardinality(g2)
is_chordal(g2, fillin = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.