which_multiple | R Documentation |
A loop edge is an edge from a vertex to itself. An edge is a multiple edge if it has exactly the same head and tail vertices as another edge. A graph without multiple and loop edges is called a simple graph.
which_multiple(graph, eids = E(graph))
any_multiple(graph)
count_multiple(graph, eids = E(graph))
which_loop(graph, eids = E(graph))
any_loop(graph)
graph |
The input graph. |
eids |
The edges to which the query is restricted. By default this is all edges in the graph. |
any_loop()
decides whether the graph has any loop edges.
which_loop()
decides whether the edges of the graph are loop edges.
any_multiple()
decides whether the graph has any multiple edges.
which_multiple()
decides whether the edges of the graph are multiple
edges.
count_multiple()
counts the multiplicity of each edge of a graph.
Note that the semantics for which_multiple()
and count_multiple()
is
different. which_multiple()
gives TRUE
for all occurrences of a
multiple edge except for one. I.e. if there are three i-j
edges in the
graph then which_multiple()
returns TRUE
for only two of them while
count_multiple()
returns ‘3’ for all three.
See the examples for getting rid of multiple edges while keeping their original multiplicity as an edge attribute.
any_loop()
and any_multiple()
return a logical scalar.
which_loop()
and which_multiple()
return a logical vector.
count_multiple()
returns a numeric vector.
igraph_is_multiple()
, igraph_has_multiple()
, igraph_count_multiple()
, igraph_is_loop()
, igraph_has_loop()
.
Gabor Csardi csardi.gabor@gmail.com
simplify()
to eliminate loop and multiple edges.
Other structural.properties:
bfs()
,
component_distribution()
,
connect()
,
constraint()
,
coreness()
,
degree()
,
dfs()
,
distance_table()
,
edge_density()
,
feedback_arc_set()
,
girth()
,
is_acyclic()
,
is_dag()
,
is_matching()
,
k_shortest_paths()
,
knn()
,
reciprocity()
,
subcomponent()
,
subgraph()
,
topo_sort()
,
transitivity()
,
unfold_tree()
,
which_mutual()
# Loops
g <- make_graph(c(1, 1, 2, 2, 3, 3, 4, 5))
any_loop(g)
which_loop(g)
# Multiple edges
g <- sample_pa(10, m = 3, algorithm = "bag")
any_multiple(g)
which_multiple(g)
count_multiple(g)
which_multiple(simplify(g))
all(count_multiple(simplify(g)) == 1)
# Direction of the edge is important
which_multiple(make_graph(c(1, 2, 2, 1)))
which_multiple(make_graph(c(1, 2, 2, 1), dir = FALSE))
# Remove multiple edges but keep multiplicity
g <- sample_pa(10, m = 3, algorithm = "bag")
E(g)$weight <- count_multiple(g)
g <- simplify(g, edge.attr.comb = list(weight = "min"))
any(which_multiple(g))
E(g)$weight
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.