Nothing
#' Return a dataframe that contains all player averages for a given iteration ID
#'
#' @param iteration 'IMPECT' iteration ID
#' @param token bearer token
#' @param host host environment
#'
#' @export
#'
#' @importFrom dplyr %>%
#' @importFrom rlang .data
#' @return a dataframe containing the KPI averages aggregated per player and
#' position for the given iteration ID
#'
#' @examples
#' # Toy example: this will error quickly (no API token)
#' try(player_avgs <- getPlayerIterationAverages(
#' iteration = 0,
#' token = "invalid"
#' ))
#'
#' # Real usage: requires valid Bearer Token from `getAccessToken()`
#' \dontrun{
#' player_avgs <- getPlayerIterationAverages(
#' iteration = 1004,
#' token = "yourToken"
#' )
#' }
getPlayerIterationAverages <- function (
iteration,
token,
host = "https://api.impect.com"
) {
# check if iteration input is a string or integer
if (!(base::is.numeric(iteration) ||
base::is.character(iteration))) {
stop("Unprocessable type for 'iteration' variable")
}
# get squad master data from API
squads <- jsonlite::fromJSON(
httr::content(
.callAPIlimited(
host,
base_url = "/v5/customerapi/iterations/",
id = iteration,
suffix = "/squads",
token = token
),
"text",
encoding = "UTF-8"
)
)$data %>%
jsonlite::flatten()
# get squadIds
squadIds <- squads %>%
dplyr::filter(.data$access == TRUE) %>%
dplyr::pull(.data$id) %>%
base::unique()
# get player iteration averages for all squads from API
averages_raw <-
purrr::map_df(
squadIds,
~ {
temp <-jsonlite::fromJSON(
httr::content(
.callAPIlimited(
host,
base_url = paste0(
"/v5/customerapi/iterations/",
iteration,
"/squads/",
.,
"/player-kpis"
),
token = token
),
"text",
encoding = "UTF-8"
)
)$data
if (base::length(temp) > 0) {
temp <- temp %>%
dplyr::mutate(squadId = ..1, iterationId = iteration)
} else {
temp <- dplyr::tibble()
}
}
)
# get player master data from API
players <- jsonlite::fromJSON(
httr::content(
.callAPIlimited(
host,
base_url = "/v5/customerapi/iterations/",
id = iteration,
suffix = "/players",
token = token
),
"text",
encoding = "UTF-8"
)
)$data %>%
base::unique()
# clean data
players <- .cleanData(players)
# get kpi names from API
kpis <- jsonlite::fromJSON(
httr::content(
.callAPIlimited(
host,
base_url = "/v5/customerapi/kpis",
token = token
),
"text",
encoding = "UTF-8"
)
)$data %>%
jsonlite::flatten() %>%
dplyr::select(.data$id, .data$name)
# get iterations from API
iterations <- getIterations(token = token, host = host)
# manipulate averages
# unnest scorings
averages <- averages_raw %>%
tidyr::unnest("kpis", keep_empty = TRUE) %>%
dplyr::select(
.data$iterationId,
.data$squadId,
.data$playerId,
.data$position,
.data$playDuration,
.data$matchShare,
.data$kpiId,
.data$value
) %>%
# join with kpis to ensure all kpiIds are present and order by kpiId
dplyr::full_join(kpis, by = c("kpiId" = "id")) %>%
dplyr::arrange(.data$kpiId, .data$playerId) %>%
# drop kpiId column
dplyr::select(-.data$kpiId) %>%
# pivot data
tidyr::pivot_wider(
names_from = .data$name,
values_from = .data$value,
values_fill = 0,
values_fn = base::sum
) %>%
# filter for non NA columns that were created by full join
dplyr::filter(base::is.na(.data$playerId) == FALSE) %>%
# remove the "NA" column if it exists
dplyr::select(-dplyr::matches("^NA$"))
# merge with other data
averages <- averages %>%
dplyr::left_join(dplyr::select(squads, .data$id, squadName = .data$name),
by = c("squadId" = "id")) %>%
dplyr::left_join(
dplyr::select(
players,
.data$id,
.data$wyscoutId,
.data$heimSpielId,
.data$skillCornerId,
playerName = .data$commonname,
.data$firstname,
.data$lastname,
.data$birthdate,
.data$birthplace,
.data$leg
),
by = c("playerId" = "id")) %>%
dplyr::left_join(dplyr::select(
iterations, .data$id, .data$competitionName, .data$season),
by = c("iterationId" = "id")
)
# define column order
order <- c(
"iterationId",
"competitionName",
"season",
"squadId",
"squadName",
"playerId",
"wyscoutId",
"heimSpielId",
"skillCornerId",
"playerName",
"firstname",
"lastname",
"birthdate",
"birthplace",
"leg",
"position",
"matchShare",
"playDuration",
kpis$name
)
# select columns
averages <- averages %>%
dplyr::select(dplyr::all_of(order))
# return matchsums
return(averages)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.