| Poisson2_1D | R Documentation |
Point data and count data, together with intensity function and expected counts for a unimodal nonhomogeneous 1-dimensional Poisson process example.
data(Poisson2_1D)
The data contain the following R objects:
lambda2_1D:A function defining the intensity function of a nonhomogeneous Poisson process. Note that this function is only defined on the interval (0,55).
cov2_1D:A function that gives what we will call a 'habitat suitability' covariate in 1D space.
E_nc2The expected counts of the gridded data.
pts2 The locations of the observed points (a data frame with
one column, named x).
countdata2A data frame with three columns, containing the count data:
xThe grid cell midpoint.
countThe number of detections in the cell.
exposureThe width of the cell.
if (require("ggplot2", quietly = TRUE)) {
data(Poisson2_1D)
p1 <- ggplot(countdata2) +
geom_point(data = countdata2, aes(x = x, y = count), col = "blue") +
ylim(0, max(countdata2$count, E_nc2)) +
geom_point(
data = countdata2, aes(x = x), y = 0, shape = "+",
col = "blue", cex = 4
) +
geom_point(
data = data.frame(x = countdata2$x, y = E_nc2), aes(x = x),
y = E_nc2, shape = "_", cex = 5
) +
xlab(expression(bold(s))) +
ylab("count")
ss <- seq(0, 55, length.out = 200)
lambda <- lambda2_1D(ss)
p2 <- ggplot() +
geom_line(
data = data.frame(x = ss, y = lambda),
aes(x = x, y = y), col = "blue"
) +
ylim(0, max(lambda)) +
geom_point(data = pts2, aes(x = x), y = 0.2, shape = "|", cex = 4) +
xlab(expression(bold(s))) +
ylab(expression(lambda(bold(s))))
multiplot(p1, p2, cols = 1)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.