Description Usage Arguments Details Value Author(s) References Examples
Intrinsic dimension estimation with the DANCo (Ceruti et al. 2012), MIND_MLi and MIND_MLk (Rozza et al. 2012) methods.
1 | dancoDimEst(data, k, D, ver = "DANCo", calibration.data = NULL)
|
data |
a data set for which the intrinsic dimension is estimated. |
k |
neighborhood parameter. |
D |
maximal dimension. |
ver |
possible values: 'DANCo', 'MIND_MLi', 'MIND_MLk'. |
calibration.data |
precomputed calibration data. |
If cal = NULL
or the cal$maxdim < D
new calibration data will be computed as needed.
A DimEst
object with slots:
dim.est |
the intrinsic dimension estimate. |
kl.divergence |
the KL divergence between data and reference data for the estimated dimension (if ver == 'DANCo'). |
calibration.data |
calibration data that can be reused when applying DANCo to data sets of the same size with the same neighborhood parameter k. |
Kerstin Johnsson, Lund University
Ceruti, C. et al. (2012) DANCo: Dimensionality from Angle and Norm Concentration. arXiv preprint 1206.3881.
Rozza, A et al. (2012) Novel high intrinsic dimensionality estimators. Machine learning 89, 37-65.
1 2 3 4 5 6 7 | data <- hyperBall(50, 10)
res <- dancoDimEst(data, 8, 20)
print(res)
## Reusing calibration data
data2 <- hyperBall(50, 5)
dancoDimEst(data2, 8, 20, calibration.data=res$calibration.data)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.