DANCo: Dimension Estimation With the DANCo and MIND Methods

Description Usage Arguments Details Value Author(s) References Examples

Description

Intrinsic dimension estimation with the DANCo (Ceruti et al. 2012), MIND_MLi and MIND_MLk (Rozza et al. 2012) methods.

Usage

1
dancoDimEst(data, k, D, ver = "DANCo", calibration.data = NULL)

Arguments

data

a data set for which the intrinsic dimension is estimated.

k

neighborhood parameter.

D

maximal dimension.

ver

possible values: 'DANCo', 'MIND_MLi', 'MIND_MLk'.

calibration.data

precomputed calibration data.

Details

If cal = NULL or the cal$maxdim < D new calibration data will be computed as needed.

Value

A DimEst object with slots:

dim.est

the intrinsic dimension estimate.

kl.divergence

the KL divergence between data and reference data for the estimated dimension (if ver == 'DANCo').

calibration.data

calibration data that can be reused when applying DANCo to data sets of the same size with the same neighborhood parameter k.

Author(s)

Kerstin Johnsson, Lund University

References

Ceruti, C. et al. (2012) DANCo: Dimensionality from Angle and Norm Concentration. arXiv preprint 1206.3881.

Rozza, A et al. (2012) Novel high intrinsic dimensionality estimators. Machine learning 89, 37-65.

Examples

1
2
3
4
5
6
7
data <- hyperBall(50, 10)
res <- dancoDimEst(data, 8, 20)
print(res)

## Reusing calibration data
data2 <- hyperBall(50, 5)
dancoDimEst(data2, 8, 20, calibration.data=res$calibration.data)

intrinsicDimension documentation built on June 7, 2019, 5:02 p.m.