Description Usage Arguments Details Value Author(s) References See Also Examples
Intrinsic dimension estimation with method given as parameter.
1 2 3 | localIntrinsicDimension(.data, .method, ...)
globalIntrinsicDimension(.data, .method, ...)
pointwiseIntrinsicDimension(.data, .method, ...)
|
.data |
Data set for which dimension should be estimated. |
.method |
For |
... |
arguments passed to intrinsic dimension estimator. |
For the localIntrinsicDimension
function, .data
should be a
local data set, i.e. a piece of a data set that is well approximated by a
hyperplane (meaning that the curvature should be low in the local data set).
The function pointwiseIntrinsicDimension
estimates local dimension
around each data point in the data set.
For localIntrinsicDimension
and globalIntrinsicDimension
, a DimEst
object with the slot dim.est
containing the dimension estimate and possibly additional slots containing additional information about the estimation process.
For pointwiseIntrinsicDimension
, a DimEstPointwise
object, inheriting data.frame
, with one slot dim.est
containing the dimension estimates and possibly additional slots containing additional information about the estimation process.
Kerstin Johnsson, Lund University
Johnsson, K (2016). Structures in high-dimensional data: Intrinsic dimension and cluster analysis. PhD thesis. Lund University.
Johnsson, K., Soneson, C. and Fontes, M. (2015). Low Bias Local Intrinsic Dimension Estimation from Expected Simplex Skewness. IEEE Trans. Pattern Anal. Mach. Intell., 37(1), 196-202.
Ceruti, C. et al. (2012). DANCo: Dimensionality from Angle and Norm Concentration. arXiv preprint 1206.3881.
Rozza, A et al. (2012). Novel high intrinsic dimensionality estimators. Machine learning 89, 37-65.
Fukunaga, K. and Olsen, D. R. (1971). An algorithm for finding intrinsic dimensionality of data. IEEE Trans. Comput., c-20(2):176-183.
Fan, M. et al. (2010). Intrinsic dimension estimation of data by principal component analysis. arXiv preprint 1002.2050.
Bruske, J. and Sommer, G. (1998) Intrinsic dimensionality estimation with optimally topology preserving maps. IEEE Trans. on Pattern Anal. and Mach. Intell., 20(5), 572-575.
Haro, G., Randall, G. and Sapiro, G. (2008) Translated Poisson Mixture Model for Stratification Learning. Int. J. Comput. Vis., 80, 358-374.
Hill, B. M. (1975) A simple general approach to inference about the tail of a distribution. Ann. Stat., 3(5) 1163-1174.
Levina, E. and Bickel., P. J. (2005) Maximum likelihood estimation of intrinsic dimension. Advances in Neural Information Processing Systems 17, 777-784. MIT Press.
Carter, K.M., Raich, R. and Hero, A.O. (2010) On local intrinsic dimension estimation and its applications. IEEE Trans. on Sig. Proc., 58(2), 650-663.
essLocalDimEst
, dancoDimEst
, pcaLocalDimEst
, knnDimEst
pcaOtpmPointwiseDimEst
, maxLikGlobalDimEst
, maxLikLocalDimEst
,
maxLikPointwiseDimEst
1 2 3 4 | data <- hyperBall(100, 4, 15, .05)
localIntrinsicDimension(data, .method='essLocalDimEst', ver = 'a', d = 1)
globalIntrinsicDimension(data, 'dancoDimEst', k = 8, D = 20)
pointwiseIntrinsicDimension(data, .method='maxLikPointwiseDimEst', k = 8, dnoise = NULL)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.