View source: R/ability_estimation.R
est_ability | R Documentation |
This function estimates examinee ability using different methods, including Owen's Bayesian estimation, Maximum Likelihood estimation, Maximum-a-Posteriori and Expected-a-Posteriori.
est_ability(
resp,
ip = NULL,
method = c("eap", "ml", "map", "bm", "owen", "sum_score"),
...,
prior_dist = c("norm", "unif", "lnorm", "gamma", "t", "cauchy"),
prior_pars = c(0, 1),
theta_range = c(-5, 5),
number_of_quads = 41,
tol = 1e-06,
output_type = c("list", "data.frame", "tibble")
)
resp |
A |
ip |
An |
method |
The method used for ability estimation. The default is
Available methods:
|
... |
Additional arguments passed to specific methods. |
prior_dist |
The shape of the prior distribution. Available options are:
The default value is |
prior_pars |
Parameters of the prior distribution. Default value is
If method is |
theta_range |
The limits of the ability estimation scale. The estimation
result will be bounded within this interval. Default is |
number_of_quads |
Number of quadratures. The default value is 41. As this number increases, the precision of the estimate will also increase. |
tol |
The precision level of ability estimate. The final ability
estimates will be rounded to remove precision smaller than the |
output_type |
A string specifying the output type of the function.
Default is
|
est
The estimated examinee abilities. If the response vector
for a subject contains all NA
s, then est
will be NA
to
differentiate from cases where all answers are incorrect.
se
The standard errors of the ability estimates. For
"sum_score"
method, all standard errors will be NA
. For
Bayesian methods (like EAP, MAP or Owen's), this value is the square root
of the posterior variance.
Emre Gonulates
Owen, R. J. (1975). A Bayesian sequential procedure for quantal response in the context of adaptive mental testing. Journal of the American Statistical Association, 70(350), 351-356.
Vale, C. D., & Weiss, D. J. (1977). A Rapid Item-Search Procedure for Bayesian Adaptive Testing. Research Report 77-4. Minneapolis, MN.
ip <- generate_ip(n = 7)
resp <- sim_resp(ip, theta = rnorm(3))
### EAP estimation ###
est_ability(resp, ip)
est_ability(resp, ip, number_of_quads = 81)
# The default prior_dist is 'norm'. prior_pars = c(mean, sd)
est_ability(resp, ip, prior_pars = c(0, 3))
# prior_pars = c(min, max)
est_ability(resp, ip, prior_dist = 'unif', prior_pars = c(-3, 3))
# prior_pars = c(df)
est_ability(resp, ip, prior_dist = 't', prior_pars = 3)
# prior_pars = c(location, scale)
est_ability(resp, ip, prior_dist = 'cauchy', prior_pars = c(0, 1))
### MAP estimation (Bayes Modal estimation) ###
est_ability(resp, ip, method = "map")
# The default prior_dist is 'norm'. prior_pars = c(mean, sd)
est_ability(resp, ip, method = "map", prior_pars = c(0, 2))
### Maximum Likelihood estimation ###
est_ability(resp, ip, method = 'ml')
est_ability(resp, ip, method = 'ml', tol = 1e-8)
est_ability(resp = rep(1, length(ip)), ip, method = 'ml')
est_ability(resp = rep(1, length(ip)), ip, method = 'ml',
theta_range = c(-3, 3))
### Owen's Bayesian ability estimation ###
est_ability(resp, ip, method = 'owen')
est_ability(resp, ip, method = 'owen', prior_pars = c(0, 3))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.