GoF.islasso.path | R Documentation |
Extracts the tuning parameter lambda
minimizing multiple information criteria from a fitted islasso.path
object.
Supported criteria include AIC, BIC, AICc, eBIC, GCV, and GIC.
GoF.islasso.path(object, plot = TRUE, ...)
object |
A fitted model of class |
plot |
Logical. If |
... |
Additional arguments passed to lower-level plotting or diagnostic methods. |
This function identifies the optimal regularization parameter lambda
by minimizing various information-based selection criteria.
Degrees of freedom are computed as the trace of the hat matrix, which may be fractional under induced smoothing.
This provides a robust alternative to cross-validation, especially in high-dimensional settings.
A list with components:
gof |
Matrix of goodness-of-fit values across lambda values. |
minimum |
Index positions of the minimum for each criterion. |
lambda.min |
Optimal lambda values that minimize each criterion. |
Gianluca Sottile gianluca.sottile@unipa.it
islasso.path
, summary.islasso.path
, predict.islasso.path
,
coef.islasso.path
, deviance.islasso.path
, logLik.islasso.path
,
residuals.islasso.path
, fitted.islasso.path
set.seed(1)
n <- 100; p <- 30
beta <- c(runif(10, -2, 2), rep(0, p - 10))
sim <- simulXy(n = n, p = p, beta = beta, seed = 1, family = gaussian())
fit <- islasso.path(y ~ ., data = sim$data, family = gaussian())
GoF.islasso.path(fit)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.