| simulXy | R Documentation |
Generates synthetic covariates and response vector from a specified distribution for simulation studies or method validation.
simulXy(
n,
p,
interc = 0,
beta,
family = gaussian(),
prop = 0.1,
lim.b = c(-3, 3),
sigma = 1,
size = 1,
rho = 0,
scale.data = TRUE,
seed = NULL,
X = NULL,
dispersion = 0.1
)
n |
Integer. Number of observations. |
p |
Integer. Total number of covariates in the model matrix. |
interc |
Numeric. Intercept to include in the linear predictor. Default is |
beta |
Numeric vector of length |
family |
Distribution and link function. Allowed: |
prop |
Numeric in |
lim.b |
Numeric vector of length 2. Range for coefficients if |
sigma |
Standard deviation of Gaussian response. Default is |
size |
Integer. Number of trials for binomial response. Default is |
rho |
Numeric. Correlation coefficient for generating covariates. Used to create AR(1)-type covariance: |
scale.data |
Logical. Whether to scale columns of the model matrix. Default is |
seed |
Optional. Integer seed for reproducibility. |
X |
Optional. Custom model matrix. If supplied, it overrides the internally generated |
dispersion |
Dispersion parameter of Gamma response. Default is |
A list with components:
X |
Model matrix of dimension |
y |
Simulated response vector |
beta |
True regression coefficients used |
eta |
Linear predictor |
n <- 100; p <- 100
beta <- c(runif(10, -3, 3), rep(0, p - 10))
sim <- simulXy(n = n, p = p, beta = beta, seed = 1234)
o <- islasso(y ~ ., data = sim$data, family = gaussian())
summary(o, pval = 0.05)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.