islasso | R Documentation |
This package implements an induced smoothed approach for hypothesis testing in Lasso regression.
Fits regression models with a smoothed L1 penalty under the induced smoothing paradigm. Supports linear, logistic, Poisson, and Gamma responses. Enables reliable standard errors and Wald-based inference.
islasso(
formula,
family = gaussian,
lambda,
alpha = 1,
data,
weights,
subset,
offset,
unpenalized,
contrasts = NULL,
control = is.control()
)
formula |
A symbolic formula describing the model. |
family |
Response distribution. Can be |
lambda |
Regularization parameter. If missing, it is estimated via |
alpha |
Elastic-net mixing parameter ( |
data |
A data frame or environment containing the variables in the model. |
weights |
Observation weights. Defaults to 1. |
subset |
Optional vector specifying a subset of rows to include. |
offset |
Optional numeric vector of offsets in the linear predictor. |
unpenalized |
Vector indicating variables (by name or index) to exclude from penalization. |
contrasts |
Optional contrasts specification for factor variables. |
control |
A list of parameters to control model fitting. See |
Package: | islasso |
Type: | Package |
Version: | 1.6.0 |
Date: | 2025-07-30 |
License: | GPL-2 |
islasso
fits generalized linear models with an L1 penalty on selected coefficients.
It returns both point estimates and full covariance matrices, enabling standard error-based inference.
Related methods include: summary.islasso
, predict.islasso
, logLik.islasso
, deviance.islasso
, and residuals.islasso
.
islasso.path
fits regularization paths using the Induced Smoothed Lasso.
It computes coefficients and standard errors across a grid of lambda
values.
Companion methods include: summary.islasso.path
, predict.islasso.path
, logLik.islasso.path
, residuals.islasso.path
, coef.islasso.path
, and fitted.islasso.path
.
The non-smooth L1 penalty is replaced by a smooth approximation, enabling inference through standard errors and Wald tests. The approach controls type-I error and shows strong power in various simulation settings.
A list with components such as:
coefficients |
Estimated coefficients |
se |
Standard errors |
fitted.values |
Fitted values |
deviance , aic , null.deviance |
Model diagnostic metrics |
residuals , weights |
IWLS residuals and weights |
df.residual , df.null , rank |
Degrees of freedom |
converged |
Logical; convergence status |
model , call , terms , formula , data , offset |
Model objects |
xlevels , contrasts |
Factor handling details |
lambda , alpha , dispersion |
Model parameters |
internal |
Other internal values |
Gianluca Sottile, based on preliminary work by Vito Muggeo. Maintainer: gianluca.sottile@unipa.it
Gianluca Sottile gianluca.sottile@unipa.it
Cilluffo, G., Sottile, G., La Grutta, S., Muggeo, VMR (2019). *The Induced Smoothed lasso: A practical framework for hypothesis testing in high dimensional regression*, Statistical Methods in Medical Research. DOI: \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1177/0962280219842890")}
Sottile, G., Cilluffo, G., Muggeo, VMR (2019). *The R package islasso: estimation and hypothesis testing in lasso regression*. Technical Report on ResearchGate. DOI: \Sexpr[results=rd]{tools:::Rd_expr_doi("10.13140/RG.2.2.16360.11521")}
Cilluffo G., Sottile G., La Grutta S., Muggeo V.M.R. (2019) The Induced Smoothed Lasso: A practical framework for hypothesis testing in high dimensional regression. Statistical Methods in Medical Research. DOI: 10.1177/0962280219842890
Sottile G., Cilluffo G., Muggeo V.M.R. (2019) The R package islasso: estimation and hypothesis testing in lasso regression. Technical Report. DOI: 10.13140/RG.2.2.16360.11521
summary.islasso
, predict.islasso
, logLik.islasso
n <- 100; p <- 100
beta <- c(rep(1, 5), rep(0, p - 5))
sim1 <- simulXy(n = n, p = p, beta = beta, seed = 1, family = gaussian())
o <- islasso(y ~ ., data = sim1$data, family = gaussian())
summary(o, pval = 0.05)
coef(o)
fitted(o)
predict(o, type="response")
plot(o)
residuals(o)
deviance(o)
AIC(o)
logLik(o)
## Not run:
# for the interaction
o <- islasso(y ~ X1 * X2, data = sim1$data, family = gaussian())
##### binomial ######
beta <- c(c(1,1,1), rep(0, p-3))
sim2 <- simulXy(n = n, p = p, beta = beta, interc = 1, seed = 1,
size = 100, family = binomial())
o2 <- islasso(cbind(y.success, y.failure) ~ .,
data = sim2$data, family = binomial())
summary(o2, pval = 0.05)
##### poisson ######
beta <- c(c(1,1,1), rep(0, p-3))
sim3 <- simulXy(n = n, p = p, beta = beta, interc = 1, seed = 1,
family = poisson())
o3 <- islasso(y ~ ., data = sim3$data, family = poisson())
summary(o3, pval = 0.05)
##### Gamma ######
beta <- c(c(1,1,1), rep(0, p-3))
sim4 <- simulXy(n = n, p = p, beta = beta, interc = -1, seed = 1,
dispersion = 0.1, family = Gamma(link = "log"))
o4 <- islasso(y ~ ., data = sim4$data, family = Gamma(link = "log"))
summary(o4, pval = 0.05)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.