Description Usage Arguments Details Value Author(s) References Examples
Dynamic prediction of death using a joint frailty-copula model. Probability of death between t and t+w is calculated given a tumour progression time X and covariates Z1 and Z2. If X<=t, the prediction probability is F(t,t+w|X=x, Z1, Z2). If X>t, the prediction probability is F(t,t+w|X>t, Z1, Z2). This is a vector version of F.window.Weibull.
1 2  | F.windows.Weibull(time, widths, X, Z1, Z2, beta1, beta2, eta, theta, alpha, 
                  scale1, shape1,scale2,shape2, xi1, xi3, Fplot = TRUE)
 | 
time | 
 prediction time (=t)  | 
widths | 
 length of window (=w)  | 
X | 
 time of tumour progression < time  | 
Z1 | 
 a vector of covariates for progression  | 
Z2 | 
 a vector of covariates for death  | 
beta1 | 
 a vector of regression coefficients for progression  | 
beta2 | 
 a vector of regression coefficients for death  | 
eta | 
 frailty variance  | 
theta | 
 copula parameter  | 
alpha | 
 parameter related to frailty; usually alpha=1  | 
scale1 | 
 scale parameter related to the baseline hazard for progression  | 
shape1 | 
 shape parameter related to the baseline hazard for progression  | 
scale2 | 
 scale parameter related to the baseline hazard for death  | 
shape2 | 
 shape parameter related to the baseline hazard for death  | 
xi1 | 
 lower bound for time to event  | 
xi3 | 
 upper bound for time to death  | 
Fplot | 
 if FALSE, the plot is not shown  | 
Predicted probability of death is calculated given the event status (X<=t or X>t) and covariates (Z1 and Z2).
time  | 
 t  | 
widths  | 
 w  | 
X  | 
 X  | 
F_event_at_X  | 
 F(t,t+w|X=x, Z1, Z2)  | 
F_noevent  | 
 F(t,t+w|X>t, Z1, Z2)  | 
Sayaka Shinohara, Takeshi Emura
Emura T, Nakatochi M, Matsui S, Michimae H, Rondeau V (2018), Personalized dynamic prediction of death according to tumour progression and high-dimensional genetic factors: meta-analysis with a joint model, Stat Methods Med Res 27(9):2842-58
Shinohara S, Lin YH, Michimae H, Emura T (2020), Dynamic lifetime prediction using a Weibull-based bivariate failure time model: a meta-analysis of individual-patient data, Comm Stat Simul, DOI:10.1080/03610918.2020.1855449
1 2 3 4 5 6  | w=c(0,0.5,1,1.5,2)
par(mfrow=c(1,2))
F.windows.Weibull(time=1,X=0.2,widths=w,Z1=1,Z2=1,beta1=1,beta2=1,eta=0.5,theta=8,
                  alpha=1,scale1=1,shape1=1,scale2=1,shape2=1,xi1=0,xi3=3)
F.windows.Weibull(time=1,X=0.8,widths=w,Z1=1,Z2=1,beta1=1,beta2=1,eta=0.5,theta=8,
                  alpha=1,scale1=1,shape1=1,scale2=1,shape2=1,xi1=0,xi3=3)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.