Nothing
#' Convolution layers
#'
#' @param filters Integer, the dimensionality of the output space
#' (i.e. the number output of filters in the
#' convolution).
#' @param kernel_size A pair of integers specifying the dimensions of
#' the 2D convolution window.
#' @param strides A pair of integers specifying the stride length
#' of the convolution.
#' @param padding One of "valid", "causal" or "same"
#' (case-insensitive).
#' @param data_format A string, one of channels_last (default) or
#' channels_first.
#' The ordering of the dimensions in the inputs.
#' @param depth_multiplier The number of depthwise convolution output
#' channels for each input channel. The total
#' number of depthwise convolution output channels
#' will be equal to filterss_in * depth_multiplier.
#' @param dilation_rate A pair of integers specifying the dilation rate
#' to use for dilated convolution
#' @param activation Activation function to use
#' @param use_bias Boolean, whether the layer uses a bias vector.
#' @param kernel_initializer Initializer for the kernel weights matrix
#' @param bias_initializer Initializer for the bias vector
#' @param kernel_regularizer Regularizer function applied to the kernel
#' weights matrix
#' @param bias_regularizer Regularizer function applied to the bias vector
#' @param activity_regularizer Regularizer function applied to the output
#' of the layer (its "activation").
#' @param kernel_constraint Constraint function applied to the kernel
#' matrix
#' @param bias_constraint Constraint function applied to the bias vector
#' @param input_shape only need when first layer of a model; sets the
#' input shape of the data
#'
#' @example inst/examples/convolutional.R
#' @template boilerplate
#' @name Conv
NULL
#' @rdname Conv
#' @export
#' @family layers
Conv1D <- function(filters,
kernel_size,
strides = 1,
padding = 'valid',
dilation_rate = 1,
activation = NULL,
use_bias = TRUE,
kernel_initializer = 'glorot_uniform',
bias_initializer = 'zeros',
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
input_shape = NULL) {
keras_check()
# Need special logic for input_shape because it is passed
# via kwargs and needs to be manually adjusted
if (is.null(input_shape)) {
res <- modules$keras.layers.convolutional$Conv1D(
filters = int32(filters),
kernel_size = int32(kernel_size),
strides = int32(strides),
padding = padding,
dilation_rate = int32(dilation_rate),
activation = activation,
use_bias = use_bias,
kernel_initializer = kernel_initializer,
bias_initializer = bias_initializer,
kernel_regularizer = kernel_regularizer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
bias_constraint = bias_constraint)
} else {
input_shape <- as.list(input_shape)
input_shape <- modules$builtin$tuple(int32(input_shape))
res <- modules$keras.layers.convolutional$Conv1D(
filters = int32(filters),
kernel_size = int32(kernel_size),
strides = int32(strides),
padding = padding,
dilation_rate = int32(dilation_rate),
activation = activation,
use_bias = use_bias,
kernel_initializer = kernel_initializer,
bias_initializer = bias_initializer,
kernel_regularizer = kernel_regularizer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
bias_constraint = bias_constraint,
input_shape = input_shape)
}
return(res)
}
#' @rdname Conv
#' @export
Conv2D <- function(filters,
kernel_size,
strides = c(1, 1),
padding = 'valid',
data_format = NULL,
dilation_rate = c(1, 1),
activation = NULL,
use_bias = TRUE,
kernel_initializer = 'glorot_uniform',
bias_initializer = 'zeros',
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
input_shape = NULL) {
keras_check()
# Need special logic for input_shape because it is passed
# via kwargs and needs to be manually adjusted
if (is.null(input_shape)) {
res <- modules$keras.layers.convolutional$Conv2D(
filters = int32(filters),
kernel_size = int32(kernel_size),
strides = int32(strides),
padding = padding,
data_format = data_format,
dilation_rate = int32(dilation_rate),
activation = activation,
use_bias = use_bias,
kernel_initializer = kernel_initializer,
bias_initializer = bias_initializer,
kernel_regularizer = kernel_regularizer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
bias_constraint = bias_constraint)
} else {
input_shape <- as.list(input_shape)
input_shape <- modules$builtin$tuple(int32(input_shape))
res <- modules$keras.layers.convolutional$Conv2D(
filters = int32(filters),
kernel_size = int32(kernel_size),
strides = int32(strides),
padding = padding,
data_format = data_format,
dilation_rate = int32(dilation_rate),
activation = activation,
use_bias = use_bias,
kernel_initializer = kernel_initializer,
bias_initializer = bias_initializer,
kernel_regularizer = kernel_regularizer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
bias_constraint = bias_constraint,
input_shape = input_shape)
}
return(res)
}
#' @rdname Conv
#' @export
SeparableConv2D <- function(filters,
kernel_size,
strides = c(1, 1),
padding = 'valid',
data_format = NULL,
depth_multiplier = 1,
dilation_rate = c(1, 1),
activation = NULL,
use_bias = TRUE,
kernel_initializer = 'glorot_uniform',
bias_initializer = 'zeros',
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
input_shape = NULL) {
keras_check()
# Need special logic for input_shape because it is passed
# via kwargs and needs to be manually adjusted
if (is.null(input_shape)) {
res <- modules$keras.layers.convolutional$SeparableConv2D(
filters = int32(filters),
kernel_size = int32(kernel_size),
strides = int32(strides),
padding = padding,
data_format = data_format,
depth_multiplier = int32(depth_multiplier),
dilation_rate = int32(dilation_rate),
activation = activation,
use_bias = use_bias,
kernel_initializer = kernel_initializer,
bias_initializer = bias_initializer,
kernel_regularizer = kernel_regularizer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
bias_constraint = bias_constraint)
} else {
input_shape <- as.list(input_shape)
input_shape <- modules$builtin$tuple(int32(input_shape))
res <- modules$keras.layers.convolutional$SeparableConv2D(
filters = int32(filters),
kernel_size = int32(kernel_size),
strides = int32(strides),
padding = padding,
data_format = data_format,
depth_multiplier = int32(depth_multiplier),
dilation_rate = int32(dilation_rate),
activation = activation,
use_bias = use_bias,
kernel_initializer = kernel_initializer,
bias_initializer = bias_initializer,
kernel_regularizer = kernel_regularizer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
bias_constraint = bias_constraint,
input_shape = input_shape)
}
return(res)
}
#' @rdname Conv
#' @export
Conv2DTranspose <- function(filters,
kernel_size,
strides = c(1, 1),
padding = 'valid',
data_format = NULL,
dilation_rate = c(1, 1),
activation = NULL,
use_bias = TRUE,
kernel_initializer = 'glorot_uniform',
bias_initializer = 'zeros',
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
input_shape = NULL) {
keras_check()
# Need special logic for input_shape because it is passed
# via kwargs and needs to be manually adjusted
if (is.null(input_shape)) {
res <- modules$keras.layers.convolutional$Conv2DTranspose(
filters = int32(filters),
kernel_size = int32(kernel_size),
strides = int32(strides),
padding = padding,
data_format = data_format,
dilation_rate = int32(dilation_rate),
activation = activation,
use_bias = use_bias,
kernel_initializer = kernel_initializer,
bias_initializer = bias_initializer,
kernel_regularizer = kernel_regularizer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
bias_constraint = bias_constraint)
} else {
input_shape <- as.list(input_shape)
input_shape <- modules$builtin$tuple(int32(input_shape))
res <- modules$keras.layers.convolutional$Conv2DTranspose(
filters = int32(filters),
kernel_size = int32(kernel_size),
strides = int32(strides),
padding = padding,
data_format = data_format,
dilation_rate = int32(dilation_rate),
activation = activation,
use_bias = use_bias,
kernel_initializer = kernel_initializer,
bias_initializer = bias_initializer,
kernel_regularizer = kernel_regularizer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
bias_constraint = bias_constraint,
input_shape = input_shape)
}
return(res)
}
#' @rdname Conv
#' @export
Conv3D <- function(filters,
kernel_size,
strides = c(1, 1, 1),
padding = 'valid',
data_format = NULL,
dilation_rate = c(1, 1, 1),
activation = NULL,
use_bias = TRUE,
kernel_initializer = 'glorot_uniform',
bias_initializer = 'zeros',
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
input_shape = NULL) {
keras_check()
# Need special logic for input_shape because it is passed
# via kwargs and needs to be manually adjusted
if (is.null(input_shape)) {
res <- modules$keras.layers.convolutional$Conv3D(
filters = int32(filters),
kernel_size = int32(kernel_size),
strides = int32(strides),
padding = padding,
data_format = data_format,
dilation_rate = int32(dilation_rate),
activation = activation,
use_bias = use_bias,
kernel_initializer = kernel_initializer,
bias_initializer = bias_initializer,
kernel_regularizer = kernel_regularizer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
bias_constraint = bias_constraint)
} else {
input_shape <- as.list(input_shape)
input_shape <- modules$builtin$tuple(int32(input_shape))
res <- modules$keras.layers.convolutional$Conv3D(
filters = int32(filters),
kernel_size = int32(kernel_size),
strides = int32(strides),
padding = padding,
data_format = data_format,
dilation_rate = int32(dilation_rate),
activation = activation,
use_bias = use_bias,
kernel_initializer = kernel_initializer,
bias_initializer = bias_initializer,
kernel_regularizer = kernel_regularizer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
bias_constraint = bias_constraint,
input_shape = input_shape)
}
return(res)
}
#' Cropping layers for 1D input (e.g. temporal sequence).
#'
#' It crops along the time dimension (axis 1).
#'
#' @param cropping integer or pair of integers. How many units
#' should be trimmed off at the beginning and end
#' of the cropping dimension (axis 1). If a single value
#' is provided, the same value will be used for both.
#' @param data_format A string, one of channels_last (default) or
#' channels_first.
#' @param input_shape only need when first layer of a model; sets the
#' input shape of the data
#'
#' @template boilerplate
#' @name Cropping
NULL
#' @rdname Cropping
#' @export
Cropping1D <- function(cropping = c(1,1), input_shape = NULL) {
keras_check()
# Need special logic for input_shape because it is passed
# via kwargs and needs to be manually adjusted
if (is.null(input_shape)) {
res <- modules$keras.layers.convolutional$Cropping1D(
cropping = int32(cropping))
} else {
input_shape <- as.list(input_shape)
input_shape <- modules$builtin$tuple(int32(input_shape))
res <- modules$keras.layers.convolutional$Cropping1D(
cropping = int32(cropping),
input_shape = input_shape)
}
return(res)
}
#' @rdname Cropping
#' @export
Cropping2D <- function(cropping = 0, data_format = NULL,
input_shape = NULL) {
keras_check()
# Need special logic for input_shape because it is passed
# via kwargs and needs to be manually adjusted
if (is.null(input_shape)) {
res <- modules$keras.layers.convolutional$Cropping2D(
cropping = int32(cropping),
data_format = data_format)
} else {
input_shape <- as.list(input_shape)
input_shape <- modules$builtin$tuple(int32(input_shape))
res <- modules$keras.layers.convolutional$Cropping2D(
cropping = int32(cropping),
data_format = data_format,
input_shape = input_shape)
}
return(res)
}
#' @rdname Cropping
#' @export
Cropping3D <- function(cropping = 0, data_format = NULL,
input_shape = NULL) {
keras_check()
# Need special logic for input_shape because it is passed
# via kwargs and needs to be manually adjusted
if (is.null(input_shape)) {
res <- modules$keras.layers.convolutional$Cropping3D(
cropping = int32(cropping),
data_format = data_format)
} else {
input_shape <- as.list(input_shape)
input_shape <- modules$builtin$tuple(int32(input_shape))
res <- modules$keras.layers.convolutional$Cropping3D(
cropping = int32(cropping),
data_format = data_format,
input_shape = input_shape)
}
return(res)
}
#' UpSampling layers.
#'
#' Repeats each temporal step size a given number of times.
#'
#' @param size integer. Upsampling factor.
#' @param data_format A string, one of channels_last
#' (default) or channels_first.
#' @param input_shape only need when first layer of a model;
#' sets the input shape of the data
#'
#' @template boilerplate
#' @name UpSampling
NULL
#' @rdname UpSampling
#' @export
UpSampling1D <- function(size = 2, input_shape = NULL) {
keras_check()
# Need special logic for input_shape because it is passed
# via kwargs and needs to be manually adjusted
if (is.null(input_shape)) {
res <- modules$keras.layers.convolutional$UpSampling1D(size = int32(size))
} else {
input_shape <- as.list(input_shape)
input_shape <- modules$builtin$tuple(int32(input_shape))
res <- modules$keras.layers.convolutional$UpSampling1D(size = int32(size),
input_shape = input_shape)
}
return(res)
}
#' @rdname UpSampling
#' @export
UpSampling2D <- function(size = c(2, 2), data_format = NULL,
input_shape = NULL) {
keras_check()
# Need special logic for input_shape because it is passed
# via kwargs and needs to be manually adjusted
if (is.null(input_shape)) {
res <- modules$keras.layers.convolutional$UpSampling2D(size = int32(size))
} else {
input_shape <- as.list(input_shape)
input_shape <- modules$builtin$tuple(int32(input_shape))
res <- modules$keras.layers.convolutional$UpSampling2D(size = int32(size),
input_shape = input_shape)
}
return(res)
}
#' @rdname UpSampling
#' @export
UpSampling3D <- function(size = c(2, 2, 2), data_format = NULL,
input_shape = NULL) {
keras_check()
# Need special logic for input_shape because it is passed
# via kwargs and needs to be manually adjusted
if (is.null(input_shape)) {
res <- modules$keras.layers.convolutional$UpSampling3D(size = int32(size))
} else {
input_shape <- as.list(input_shape)
input_shape <- modules$builtin$tuple(int32(input_shape))
res <- modules$keras.layers.convolutional$UpSampling3D(size = int32(size),
input_shape = input_shape)
}
return(res)
}
#' Zero-padding layers
#'
#' @param padding if one integer, the same symmetric padding is applied
#' to width and height. If two, how many to add
#' for height and width.
#' @param data_format A string, one of channels_last (default) or
#' channels_first.
#' @param input_shape only need when first layer of a model; sets the
#' input shape of the data
#'
#' @template boilerplate
#' @name ZeroPadding
NULL
#' @rdname ZeroPadding
#' @export
ZeroPadding1D <- function(padding = 1, input_shape = NULL) {
keras_check()
# Need special logic for input_shape because it is passed
# via kwargs and needs to be manually adjusted
if (is.null(input_shape)) {
res <- modules$keras.layers.convolutional$ZeroPadding1D(
padding = int32(padding))
} else {
input_shape <- as.list(input_shape)
input_shape <- modules$builtin$tuple(int32(input_shape))
res <- modules$keras.layers.convolutional$ZeroPadding1D(
padding = int32(padding),
input_shape = input_shape)
}
return(res)
}
#' @rdname ZeroPadding
#' @export
ZeroPadding2D <- function(padding = 1, data_format = NULL,
input_shape = NULL) {
keras_check()
# Need special logic for input_shape because it is passed
# via kwargs and needs to be manually adjusted
if (is.null(input_shape)) {
res <- modules$keras.layers.convolutional$ZeroPadding2D(
padding = int32(padding),
data_format = data_format)
} else {
input_shape <- as.list(input_shape)
input_shape <- modules$builtin$tuple(int32(input_shape))
res <- modules$keras.layers.convolutional$ZeroPadding2D(
padding = int32(padding),
data_format = data_format,
input_shape = input_shape)
}
return(res)
}
#' @rdname ZeroPadding
#' @export
ZeroPadding3D <- function(padding = 1, data_format = NULL,
input_shape = NULL) {
keras_check()
# Need special logic for input_shape because it is passed
# via kwargs and needs to be manually adjusted
if (is.null(input_shape)) {
res <- modules$keras.layers.convolutional$ZeroPadding3D(
padding = int32(padding),
data_format = data_format)
} else {
input_shape <- as.list(input_shape)
input_shape <- modules$builtin$tuple(int32(input_shape))
res <- modules$keras.layers.convolutional$ZeroPadding3D(
padding = int32(padding),
data_format = data_format,
input_shape = input_shape)
}
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.