Nothing
#' Locally-connected layer
#'
#' The LocallyConnected layers works similarly to the Conv layers,
#' except that weights are unshared, that is, a different set of
#' filters is applied at each different patch of the input.
#'
#' @param filters Integer, the dimensionality of the output space
#' (i.e. the number output of filters in the
#' convolution).
#' @param kernel_size A pair of integers specifying the dimensions
#' of the 2D convolution window.
#' @param strides A pair of integers specifying the stride length
#' of the convolution.
#' @param padding One of "valid", "causal" or "same"
#' (case-insensitive).
#' @param data_format A string, one of channels_last (default) or
#' channels_first. The ordering of the dimensions
#' in the inputs.
#' @param activation Activation function to use
#' @param use_bias Boolean, whether the layer uses a bias vector.
#' @param kernel_initializer Initializer for the kernel weights matrix
#' @param bias_initializer Initializer for the bias vector
#' @param kernel_regularizer Regularizer function applied to the kernel
#' weights matrix
#' @param bias_regularizer Regularizer function applied to the bias vector
#' @param activity_regularizer Regularizer function applied to the output
#' of the layer (its "activation").
#' @param kernel_constraint Constraint function applied to the kernel
#' matrix
#' @param bias_constraint Constraint function applied to the bias vector
#' @param input_shape only need when first layer of a model; sets
#' the input shape of the data
#'
#' @example inst/examples/local.R
#' @template boilerplate
#' @name LocallyConnected
NULL
#' @rdname LocallyConnected
#' @export
#' @family layers
LocallyConnected1D <- function(filters,
kernel_size,
strides = 1,
padding = 'valid',
activation = NULL,
use_bias = TRUE,
kernel_initializer = 'glorot_uniform',
bias_initializer = 'zeros',
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
input_shape = NULL) {
keras_check()
# Need special logic for input_shape because it is passed
# via kwargs and needs to be manually adjusted
if (is.null(input_shape)) {
res <- modules$keras.layers.local$LocallyConnected1D(
filters = int32(filters),
kernel_size = int32(kernel_size),
strides = int32(strides),
padding = padding,
activation = activation,
use_bias = use_bias,
kernel_initializer = kernel_initializer,
bias_initializer = bias_initializer,
kernel_regularizer = kernel_regularizer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
bias_constraint = bias_constraint)
} else {
input_shape <- as.list(input_shape)
input_shape <- modules$builtin$tuple(int32(input_shape))
res <- modules$keras.layers.local$LocallyConnected1D(
filters = int32(filters),
kernel_size = int32(kernel_size),
strides = int32(strides),
padding = padding,
activation = activation,
use_bias = use_bias,
kernel_initializer = kernel_initializer,
bias_initializer = bias_initializer,
kernel_regularizer = kernel_regularizer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
bias_constraint = bias_constraint,
input_shape = input_shape)
}
return(res)
}
#' @rdname LocallyConnected
#' @export
LocallyConnected2D <- function(filters,
kernel_size,
strides = c(1, 1),
padding = 'valid',
data_format = NULL,
activation = NULL,
use_bias = TRUE,
kernel_initializer = 'glorot_uniform',
bias_initializer = 'zeros',
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
input_shape = NULL) {
keras_check()
# Need special logic for input_shape because it is passed
# via kwargs and needs to be manually adjusted
if (is.null(input_shape)) {
res <- modules$keras.layers.local$LocallyConnected2D(
filters = int32(filters),
kernel_size = int32(kernel_size),
strides = int32(strides),
padding = padding,
data_format = data_format,
activation = activation,
use_bias = use_bias,
kernel_initializer = kernel_initializer,
bias_initializer = bias_initializer,
kernel_regularizer = kernel_regularizer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
bias_constraint = bias_constraint)
} else {
input_shape <- as.list(input_shape)
input_shape <- modules$builtin$tuple(int32(input_shape))
res <- modules$keras.layers.local$LocallyConnected2D(
filters = int32(filters),
kernel_size = int32(kernel_size),
strides = int32(strides),
padding = padding,
data_format = data_format,
activation = activation,
use_bias = use_bias,
kernel_initializer = kernel_initializer,
bias_initializer = bias_initializer,
kernel_regularizer = kernel_regularizer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
bias_constraint = bias_constraint,
input_shape = input_shape)
}
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.