Nothing
library(kerasR)
context("Testing convolutional layers")
check_keras_available <- function() {
if (!keras_available(silent = TRUE)) {
skip("Keras is not available on this system.")
}
}
test_that("convolutional layers", {
skip_on_cran()
check_keras_available()
X_train <- array(rnorm(100 * 28 * 28), dim = c(100, 28, 28, 1))
Y_train <- to_categorical(matrix(sample(0:2, 100, TRUE), ncol = 1), 3)
mod <- Sequential()
mod$add(Conv2D(filters = 2, kernel_size = c(2, 2),
input_shape = c(28, 28, 1)))
mod$add(Activation("relu"))
mod$add(MaxPooling2D(pool_size=c(2, 2)))
mod$add(LocallyConnected2D(filters = 2, kernel_size = c(2, 2)))
mod$add(Activation("relu"))
mod$add(MaxPooling2D(pool_size=c(2, 2)))
mod$add(Dropout(0.25))
mod$add(Flatten())
mod$add(Dropout(0.5))
mod$add(Dense(3, activation='softmax'))
keras_compile(mod, loss='categorical_crossentropy', optimizer=RMSprop())
keras_fit(mod, X_train, Y_train, verbose = 0)
testthat::expect_false(mod$stateful)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.