Nothing
library(kerasR)
context("Testing preprocessing")
check_keras_available <- function() {
if (!keras_available(silent = TRUE)) {
skip("Keras is not available on this system.")
}
}
test_that("preprocessing", {
skip_on_cran()
check_keras_available()
pad_sequences(list(1:10, 1:100, 1:5), maxlen = 200)
Tokenizer(num_words = 10)
one_hot("hello", n = 10)
text_to_word_sequence("hello")
expand_dims(array(1))
TimeDistributed(Dense(units = 3))
BatchNormalization(input_shape = c(1,2))
GaussianDropout(input_shape = c(1,2))
GaussianNoise(input_shape = c(1,2))
#LocallyConnected1D(input_shape = c(1,2), filters = 1, kernel_size = c(1))
LocallyConnected2D(input_shape = c(1,2), filters = 1, kernel_size = c(1,1))
Embedding(input_dim = c(1,2), output_dim = c(2,2), input_shape = c(1,1))
Masking(1, input_shape = c(1,2))
ActivityRegularization(input_shape = c(1,2))
Permute(dims = c(1,2), input_shape = c(1,2))
Reshape(c(1,2), input_shape = c(3))
Flatten(input_shape = c(1))
Dropout(input_shape = c(1), rate = 1)
Activation("relu", input_shape = c(1,2))
UpSampling3D(input_shape = c(1,2))
UpSampling2D(input_shape = c(1,2))
UpSampling1D(input_shape = c(1,2))
Conv3D(filters = 1, kernel_size = c(1,1,1), input_shape = c(1,2))
Conv2D(filters = 1, kernel_size = c(1,1), input_shape = c(1,2))
Conv2DTranspose(filters = 1, kernel_size = c(1,1))
SeparableConv2D(filters = 1, kernel_size = c(1,1))
#Conv1D(filters = 1, kernel_size = c(1), input_shape = c(1,2))
ThresholdedReLU(input_shape = c(1,2))
ELU(input_shape = c(1,2))
PReLU(input_shape = c(1,2))
LeakyReLU(input_shape = c(1,2))
ThresholdedReLU(input_shape = c(1,2))
BatchNormalization()
GaussianDropout()
GaussianNoise()
#LocallyConnected1D(filters = 1, kernel_size = c(1))
LocallyConnected2D(filters = 1, kernel_size = c(1,1))
Embedding(input_dim = c(1,2), output_dim = c(2,2))
Masking(1)
ActivityRegularization()
Permute(dims = c(1,2))
Reshape(c(1,2))
Activation("relu")
UpSampling3D()
UpSampling2D()
UpSampling1D()
Conv3D(filters = 1, kernel_size = c(1,1,1))
Conv2D(filters = 1, kernel_size = c(1,1))
Conv2DTranspose(filters = 1, kernel_size = c(1,1))
SeparableConv2D(filters = 1, kernel_size = c(1,1))
#Conv1D(filters = 1, kernel_size = c(1))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.