gp: Gaussian Process Model

Description Usage Arguments Value Note Author(s) See Also Examples

View source: R/gp.R

Description

Gaussian Process model.

Usage

1
gp(formula, data, inputs = inputNames(cov), cov, estim = TRUE, ...)

Arguments

formula

A formula with a left-hand side specifying the response name, and the right-hand side the trend covariates (see examples below). Factors are not allowed neither as response nor as covariates.

data

A data frame containing the response, the inputs specified in inputs, and all the trend variables required in formula.

inputs

A character vector giving the names of the inputs.

cov

A covariance kernel object or call.

estim

Logical. If TRUE, the model parameters are estimated by Maximum Likelihood. The initial values can then be specified using the parCovIni and varNoiseIni arguments of mle,covAll-method passed though dots. If FALSE, a simple Generalized Least Squares estimation will be used, see gls,covAll-method. Then the value of varNoise must be given and passed through dots in case noise is TRUE.

...

Other arguments passed to the estimation method. This will be the mle,covAll-method if estim is TRUE or gls,covAll-method if estim is FALSE. In the first case, the arguments will typically include varNoiseIni. In the second case, they will typically include varNoise. Note that a logical noise can be used in the "mle" case. In both cases, the arguments y, X, F can not be used since they are automatically passed.

Value

A list object which is given the S3 class "gp". The list content is very likely to change, and should be used through methods.

Note

When estim is TRUE, the covariance object in cov is expected to provide a gradient when used to compute a covariance matrix, since the default value of compGrad it TRUE, see mle,covAll-method.

Author(s)

Y. Deville, D. Ginsbourger, O. Roustant

See Also

mle,covAll-method for a detailed example of maximum-likelihood estimation.

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
## ==================================================================
## Example 1. Data sampled from a GP model with a known covTS object
## ==================================================================
set.seed(1234)
myCov <- covTS(inputs = c("Temp", "Humid"),
               kernel = "k1Matern5_2",
               dep = c(range = "input"),
               value = c(range = 0.4))
## change coefficients (variances)
coef(myCov) <- c(0.5, 0.8, 2, 16)
d <- myCov@d; n <- 20
## design matrix
X <- matrix(runif(n*d), nrow = n, ncol = d)
colnames(X) <- inputNames(myCov)
## generate the GP realization
myGp <- gp(formula = y ~ 1, data = data.frame(y = rep(0, n), X), 
            cov = myCov, estim = FALSE,
            beta = 10, varNoise = 0.05)
y <- simulate(myGp, cond = FALSE)$sim

## parIni: add noise to true parameters
parCovIni <- coef(myCov)
parCovIni[] <- 0.9 * parCovIni[] +  0.1 * runif(length(parCovIni))
coefLower(myCov) <- rep(1e-2, 4)
coefUpper(myCov) <- c(5, 5, 20, 20)
est <- gp(y ~ 1, data = data.frame(y = y, X),
          cov = myCov, 
          noise = TRUE,
          varNoiseLower = 1e-2,
          varNoiseIni = 1.0,
          parCovIni = parCovIni) 
summary(est)
coef(est)

## =======================================================================
## Example 2. Predicting an additive function with an additive GP model
## =======================================================================

## Not run: 
    
    addfun6d <- function(x){
       res <- x[1]^3 + cos(pi * x[2]) + abs(x[3]) * sin(x[3]^2) +
           3 * x[4]^3 + 3 * cos(pi * x[5]) + 3 * abs(x[6]) * sin(x[6]^2)
    }

    ## 'Fit' is for the learning set, 'Val' for the validation set
    set.seed(123)
    nFit <- 50   
    nVal <- 200
    d <- 6 
    inputs <- paste("x", 1L:d, sep = "")

    ## create design matrices with DiceDesign package 
    require(DiceDesign)
    require(DiceKriging)
    set.seed(0)
    dataFitIni <- DiceDesign::lhsDesign(nFit, d)$design 
    dataValIni <- DiceDesign::lhsDesign(nVal, d)$design 
    dataFit <- DiceDesign::maximinSA_LHS(dataFitIni)$design
    dataVal <- DiceDesign::maximinSA_LHS(dataValIni)$design

    colnames(dataFit) <- colnames(dataVal) <- inputs
    testfun <- addfun6d
    dataFit <- data.frame(dataFit, y = apply(dataFit, 1, testfun))
    dataVal <- data.frame(dataVal, y = apply(dataVal, 1, testfun))

    ## Creation of "CovTS" object with one range by input
    myCov <- covTS(inputs = inputs, d = d, kernel = "k1Matern3_2", 
                   dep = c(range = "input"))

    ## Creation of a gp object
    fitgp <- gp(formula = y ~ 1, data = dataFit, 
                cov = myCov, noise = TRUE, 
                parCovIni = rep(1, 2*d),
                parCovLower = c(rep(1e-4, 2*d)),
                parCovUpper = c(rep(5, d), rep(10,d)))
 
    predTS <- predict(fitgp, newdata = as.matrix(dataVal[ , inputs]), type = "UK")$mean

    ## Classical tensor product kernel as a reference for comparison
    fitRef <- DiceKriging::km(formula = ~1,
                              design = dataFit[ , inputs],
                              response = dataFit$y,  covtype="matern3_2")
    predRef <- predict(fitRef,
                       newdata = as.matrix(dataVal[ , inputs]),
                       type = "UK")$mean
    ## Compare TS and Ref
    RMSE <- data.frame(TS = sqrt(mean((dataVal$y - predTS)^2)),
                       Ref = sqrt(mean((dataVal$y - predRef)^2)),
                       row.names = "RMSE")
    print(RMSE)

    Comp <- data.frame(y = dataVal$y, predTS, predRef)
    plot(predRef ~ y, data = Comp, col = "black", pch = 4,
         xlab = "True", ylab = "Predicted",
         main = paste("Prediction on a validation set (nFit = ",
                      nFit, ", nVal = ", nVal, ").", sep = ""))
    points(predTS ~ y, data = Comp, col = "red", pch = 20)
    abline(a = 0, b = 1, col = "blue", lty = "dotted")
    legend("bottomright", pch = c(4, 20), col = c("black", "red"),
           legend = c("Ref", "Tensor Sum"))

## End(Not run)

##=======================================================================
## Example 3: a 'covMan' kernel with 3 implementations
##=======================================================================

d <- 4

## -- Define a 4-dimensional covariance structure with a kernel in R

myGaussFunR <- function(x1, x2, par) { 
    h <- (x1 - x2) / par[1]
    SS2 <- sum(h^2)
    d2 <- exp(-SS2)
    kern <- par[2] * d2
    d1 <- 2 * kern * SS2 / par[1]            
    attr(kern, "gradient") <- c(theta = d1,  sigma2 = d2)
    return(kern)
}

myGaussR <- covMan(kernel = myGaussFunR,
                   hasGrad = TRUE,
                   d = d,
                   parLower = c(theta = 0.0, sigma2 = 0.0),
                   parUpper = c(theta = Inf, sigma2 = Inf),
                   parNames = c("theta", "sigma2"),
                   label = "Gaussian kernel: R implementation")

## -- The same, still in R, but with a kernel admitting matrices as arguments

myGaussFunRVec <- function(x1, x2, par) { 
    # x1, x2 : matrices with same number of columns 'd' (dimension)
    n <- nrow(x1)
    d <- ncol(x1)     
    SS2 <- 0  
    for (j in 1:d){
        Aj <- outer(x1[ , j], x2[ , j], "-")
        Hj2 <- (Aj / par[1])^2
        SS2 <- SS2 + Hj2
    }
    D2 <- exp(-SS2)
    kern <- par[2] * D2
    D1 <- 2 * kern * SS2 / par[1] 
    attr(kern, "gradient") <- list(theta = D1,  sigma2 = D2)
  
    return(kern)
}

myGaussRVec <- covMan(
    kernel = myGaussFunRVec,
    hasGrad = TRUE,
    acceptMatrix = TRUE,
    d = d,
    parLower = c(theta = 0.0, sigma2 = 0.0),
    parUpper = c(theta = Inf, sigma2 = Inf),
    parNames = c("theta", "sigma2"),
    label = "Gaussian kernel: vectorised R implementation"
)

## -- The same, with inlined C code
## (see also another example with Rcpp by typing: ?kergp).

if (require(inline)) {

    kernCode <- "
       SEXP kern, dkern;
       int nprotect = 0, d;
       double SS2 = 0.0, d2, z, *rkern, *rdkern;

       d = LENGTH(x1);
       PROTECT(kern = allocVector(REALSXP, 1)); nprotect++;
       PROTECT(dkern = allocVector(REALSXP, 2)); nprotect++;
       rkern = REAL(kern);
       rdkern = REAL(dkern);

       for (int i = 0; i < d; i++) {
          z = ( REAL(x1)[i] - REAL(x2)[i] ) / REAL(par)[0];
          SS2 += z * z; 
       }

       d2 = exp(-SS2);
       rkern[0] = REAL(par)[1] * d2;
       rdkern[1] =  d2; 
       rdkern[0] =  2 * rkern[0] * SS2 / REAL(par)[0];

       SET_ATTR(kern, install(\"gradient\"), dkern);
       UNPROTECT(nprotect);
       return kern;
   "
    myGaussFunC <- cfunction(sig = signature(x1 = "numeric", x2 = "numeric",
                                          par = "numeric"),
                             body = kernCode)

    myGaussC <- covMan(kernel = myGaussFunC,
                       hasGrad = TRUE,
                       d = d,
                       parLower = c(theta = 0.0, sigma2 = 0.0),
                       parUpper = c(theta = Inf, sigma2 = Inf),
                       parNames = c("theta", "sigma2"),
                       label = "Gaussian kernel: C/inline implementation")

}

## == Simulate data for covMan and trend ==

n <- 100; p <- d + 1
X <- matrix(runif(n * d), nrow = n)
colnames(X) <- inputNames(myGaussRVec)
design <- data.frame(X)
coef(myGaussRVec) <- myPar <- c(theta = 0.5, sigma2 = 2)
myGp <- gp(formula = y ~ 1, data = data.frame(y = rep(0, n), design), 
            cov = myGaussRVec, estim = FALSE,
            beta = 0, varNoise = 1e-8)
y <- simulate(myGp, cond = FALSE)$sim
F <- matrix(runif(n * p), nrow = n, ncol = p)
beta <- (1:p) / p
y <- tcrossprod(F, t(beta)) + y

## == ML estimation. ==
tRVec <- system.time(
    resRVec <- gp(formula = y ~ ., data = data.frame(y = y, design),
                  cov = myGaussRVec,
                  compGrad = TRUE, 
                  parCovIni = c(0.5, 0.5), varNoiseLower = 1e-4,
                  parCovLower = c(1e-5, 1e-5), parCovUpper = c(Inf, Inf))
)

summary(resRVec)
coef(resRVec)
pRVec <- predict(resRVec, newdata = design, type = "UK")    
tAll <- tRVec
coefAll <- coef(resRVec)
## compare time required by the 3 implementations
## Not run: 
    tR <- system.time(
        resR <- gp(formula = y ~ ., data = data.frame(y = y, design),
                   cov = myGaussR,
                   compGrad = TRUE, 
                   parCovIni = c(0.5, 0.5), varNoiseLower = 1e-4,
                   parCovLower = c(1e-5, 1e-5), parCovUpper = c(Inf, Inf))
    )
    tAll <- rbind(tRVec = tAll, tR)
    coefAll <- rbind(coefAll, coef(resR))
    if (require(inline)) {
        tC <- system.time(
            resC <- gp(formula = y ~ ., data = data.frame(y = y, design),
                       cov = myGaussC,
                       compGrad = TRUE, 
                       parCovIni = c(0.5, 0.5), varNoiseLower = 1e-4,
                       parCovLower = c(1e-5, 1e-5), parCovUpper = c(Inf, Inf))
        )
        tAll <- rbind(tAll, tC)
        coefAll <- rbind(coefAll, coef(resC))
    }

## End(Not run)
tAll

## rows must be identical 
coefAll

kergp documentation built on March 18, 2021, 5:06 p.m.