| gp | R Documentation |
Gaussian Process model.
gp(formula, data, inputs = inputNames(cov), cov, estim = TRUE, ...)
formula |
A formula with a left-hand side specifying the response name, and the right-hand side the trend covariates (see examples below). Factors are not allowed neither as response nor as covariates. |
data |
A data frame containing the response, the inputs specified in
|
inputs |
A character vector giving the names of the inputs. |
cov |
A covariance kernel object or call. |
estim |
Logical. If |
... |
Other arguments passed to the estimation method. This will be the
|
A list object which is given the S3 class "gp". The list content
is very likely to change, and should be used through methods.
When estim is TRUE, the covariance object in cov
is expected to provide a gradient when used to compute a covariance
matrix, since the default value of compGrad it TRUE,
see mle,covAll-method.
Y. Deville, D. Ginsbourger, O. Roustant
mle,covAll-method for a detailed example of
maximum-likelihood estimation.
## ==================================================================
## Example 1. Data sampled from a GP model with a known covTS object
## ==================================================================
set.seed(1234)
myCov <- covTS(inputs = c("Temp", "Humid"),
kernel = "k1Matern5_2",
dep = c(range = "input"),
value = c(range = 0.4))
## change coefficients (variances)
coef(myCov) <- c(0.5, 0.8, 2, 16)
d <- myCov@d; n <- 20
## design matrix
X <- matrix(runif(n*d), nrow = n, ncol = d)
colnames(X) <- inputNames(myCov)
## generate the GP realization
myGp <- gp(formula = y ~ 1, data = data.frame(y = rep(0, n), X),
cov = myCov, estim = FALSE,
beta = 10, varNoise = 0.05)
y <- simulate(myGp, cond = FALSE)$sim
## parIni: add noise to true parameters
parCovIni <- coef(myCov)
parCovIni[] <- 0.9 * parCovIni[] + 0.1 * runif(length(parCovIni))
coefLower(myCov) <- rep(1e-2, 4)
coefUpper(myCov) <- c(5, 5, 20, 20)
est <- gp(y ~ 1, data = data.frame(y = y, X),
cov = myCov,
noise = TRUE,
varNoiseLower = 1e-2,
varNoiseIni = 1.0,
parCovIni = parCovIni)
summary(est)
coef(est)
## =======================================================================
## Example 2. Predicting an additive function with an additive GP model
## =======================================================================
## Not run:
addfun6d <- function(x){
res <- x[1]^3 + cos(pi * x[2]) + abs(x[3]) * sin(x[3]^2) +
3 * x[4]^3 + 3 * cos(pi * x[5]) + 3 * abs(x[6]) * sin(x[6]^2)
}
## 'Fit' is for the learning set, 'Val' for the validation set
set.seed(123)
nFit <- 50
nVal <- 200
d <- 6
inputs <- paste("x", 1L:d, sep = "")
## create design matrices with DiceDesign package
require(DiceDesign)
require(DiceKriging)
set.seed(0)
dataFitIni <- DiceDesign::lhsDesign(nFit, d)$design
dataValIni <- DiceDesign::lhsDesign(nVal, d)$design
dataFit <- DiceDesign::maximinSA_LHS(dataFitIni)$design
dataVal <- DiceDesign::maximinSA_LHS(dataValIni)$design
colnames(dataFit) <- colnames(dataVal) <- inputs
testfun <- addfun6d
dataFit <- data.frame(dataFit, y = apply(dataFit, 1, testfun))
dataVal <- data.frame(dataVal, y = apply(dataVal, 1, testfun))
## Creation of "CovTS" object with one range by input
myCov <- covTS(inputs = inputs, d = d, kernel = "k1Matern3_2",
dep = c(range = "input"))
## Creation of a gp object
fitgp <- gp(formula = y ~ 1, data = dataFit,
cov = myCov, noise = TRUE,
parCovIni = rep(1, 2*d),
parCovLower = c(rep(1e-4, 2*d)),
parCovUpper = c(rep(5, d), rep(10,d)))
predTS <- predict(fitgp, newdata = as.matrix(dataVal[ , inputs]), type = "UK")$mean
## Classical tensor product kernel as a reference for comparison
fitRef <- DiceKriging::km(formula = ~1,
design = dataFit[ , inputs],
response = dataFit$y, covtype="matern3_2")
predRef <- predict(fitRef,
newdata = as.matrix(dataVal[ , inputs]),
type = "UK")$mean
## Compare TS and Ref
RMSE <- data.frame(TS = sqrt(mean((dataVal$y - predTS)^2)),
Ref = sqrt(mean((dataVal$y - predRef)^2)),
row.names = "RMSE")
print(RMSE)
Comp <- data.frame(y = dataVal$y, predTS, predRef)
plot(predRef ~ y, data = Comp, col = "black", pch = 4,
xlab = "True", ylab = "Predicted",
main = paste("Prediction on a validation set (nFit = ",
nFit, ", nVal = ", nVal, ").", sep = ""))
points(predTS ~ y, data = Comp, col = "red", pch = 20)
abline(a = 0, b = 1, col = "blue", lty = "dotted")
legend("bottomright", pch = c(4, 20), col = c("black", "red"),
legend = c("Ref", "Tensor Sum"))
## End(Not run)
##=======================================================================
## Example 3: a 'covMan' kernel with 3 implementations
##=======================================================================
d <- 4
## -- Define a 4-dimensional covariance structure with a kernel in R
myGaussFunR <- function(x1, x2, par) {
h <- (x1 - x2) / par[1]
SS2 <- sum(h^2)
d2 <- exp(-SS2)
kern <- par[2] * d2
d1 <- 2 * kern * SS2 / par[1]
attr(kern, "gradient") <- c(theta = d1, sigma2 = d2)
return(kern)
}
myGaussR <- covMan(kernel = myGaussFunR,
hasGrad = TRUE,
d = d,
parLower = c(theta = 0.0, sigma2 = 0.0),
parUpper = c(theta = Inf, sigma2 = Inf),
parNames = c("theta", "sigma2"),
label = "Gaussian kernel: R implementation")
## -- The same, still in R, but with a kernel admitting matrices as arguments
myGaussFunRVec <- function(x1, x2, par) {
# x1, x2 : matrices with same number of columns 'd' (dimension)
n <- nrow(x1)
d <- ncol(x1)
SS2 <- 0
for (j in 1:d){
Aj <- outer(x1[ , j], x2[ , j], "-")
Hj2 <- (Aj / par[1])^2
SS2 <- SS2 + Hj2
}
D2 <- exp(-SS2)
kern <- par[2] * D2
D1 <- 2 * kern * SS2 / par[1]
attr(kern, "gradient") <- list(theta = D1, sigma2 = D2)
return(kern)
}
myGaussRVec <- covMan(
kernel = myGaussFunRVec,
hasGrad = TRUE,
acceptMatrix = TRUE,
d = d,
parLower = c(theta = 0.0, sigma2 = 0.0),
parUpper = c(theta = Inf, sigma2 = Inf),
parNames = c("theta", "sigma2"),
label = "Gaussian kernel: vectorised R implementation"
)
## -- The same, with inlined C code
## (see also another example with Rcpp by typing: ?kergp).
## Not run:
if (require(inline)) {
kernCode <- "
SEXP kern, dkern;
int nprotect = 0, d;
double SS2 = 0.0, d2, z, *rkern, *rdkern;
d = LENGTH(x1);
PROTECT(kern = Rf_allocVector(REALSXP, 1)); nprotect++;
PROTECT(dkern = Rf_allocVector(REALSXP, 2)); nprotect++;
rkern = REAL(kern);
rdkern = REAL(dkern);
for (int i = 0; i < d; i++) {
z = ( REAL(x1)[i] - REAL(x2)[i] ) / REAL(par)[0];
SS2 += z * z;
}
d2 = exp(-SS2);
rkern[0] = REAL(par)[1] * d2;
rdkern[1] = d2;
rdkern[0] = 2 * rkern[0] * SS2 / REAL(par)[0];
SET_ATTR(kern, Rf_install(\"gradient\"), dkern);
UNPROTECT(nprotect);
return kern;
"
myGaussFunC <- cfunction(sig = signature(x1 = "numeric", x2 = "numeric",
par = "numeric"),
body = kernCode)
myGaussC <- covMan(kernel = myGaussFunC,
hasGrad = TRUE,
d = d,
parLower = c(theta = 0.0, sigma2 = 0.0),
parUpper = c(theta = Inf, sigma2 = Inf),
parNames = c("theta", "sigma2"),
label = "Gaussian kernel: C/inline implementation")
}
## End(Not run)
## == Simulate data for covMan and trend ==
n <- 100; p <- d + 1
X <- matrix(runif(n * d), nrow = n)
colnames(X) <- inputNames(myGaussRVec)
design <- data.frame(X)
coef(myGaussRVec) <- myPar <- c(theta = 0.5, sigma2 = 2)
myGp <- gp(formula = y ~ 1, data = data.frame(y = rep(0, n), design),
cov = myGaussRVec, estim = FALSE,
beta = 0, varNoise = 1e-8)
y <- simulate(myGp, cond = FALSE)$sim
F <- matrix(runif(n * p), nrow = n, ncol = p)
beta <- (1:p) / p
y <- tcrossprod(F, t(beta)) + y
## == ML estimation. ==
tRVec <- system.time(
resRVec <- gp(formula = y ~ ., data = data.frame(y = y, design),
cov = myGaussRVec,
compGrad = TRUE,
parCovIni = c(0.5, 0.5), varNoiseLower = 1e-4,
parCovLower = c(1e-5, 1e-5), parCovUpper = c(Inf, Inf))
)
summary(resRVec)
coef(resRVec)
pRVec <- predict(resRVec, newdata = design, type = "UK")
tAll <- tRVec
coefAll <- coef(resRVec)
## compare time required by the 3 implementations
## Not run:
tR <- system.time(
resR <- gp(formula = y ~ ., data = data.frame(y = y, design),
cov = myGaussR,
compGrad = TRUE,
parCovIni = c(0.5, 0.5), varNoiseLower = 1e-4,
parCovLower = c(1e-5, 1e-5), parCovUpper = c(Inf, Inf))
)
tAll <- rbind(tRVec = tAll, tR)
coefAll <- rbind(coefAll, coef(resR))
if (require(inline)) {
tC <- system.time(
resC <- gp(formula = y ~ ., data = data.frame(y = y, design),
cov = myGaussC,
compGrad = TRUE,
parCovIni = c(0.5, 0.5), varNoiseLower = 1e-4,
parCovLower = c(1e-5, 1e-5), parCovUpper = c(Inf, Inf))
)
tAll <- rbind(tAll, tC)
coefAll <- rbind(coefAll, coef(resC))
}
## End(Not run)
tAll
## rows must be identical
coefAll
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.