onlearn-class | R Documentation |
The class of objects used by the Kernel-based Online learning algorithms
Objects can be created by calls of the form new("onlearn", ...)
.
or by calls to the function inlearn
.
kernelf
:Object of class "function"
containing
the used kernel function
buffer
:Object of class "numeric"
containing
the size of the buffer
kpar
:Object of class "list"
containing the
hyperparameters of the kernel function.
xmatrix
:Object of class "matrix"
containing
the data points (similar to support vectors)
fit
:Object of class "numeric"
containing the
decision function value of the last data point
onstart
:Object of class "numeric"
used for indexing
onstop
:Object of class "numeric"
used for indexing
alpha
:Object of class "ANY"
containing the
model parameters
rho
:Object of class "numeric"
containing model
parameter
b
:Object of class "numeric"
containing the offset
pattern
:Object of class "factor"
used for
dealing with factors
type
:Object of class "character"
containing
the problem type (classification, regression, or novelty
signature(object = "onlearn")
: returns the model
parameters
signature(object = "onlearn")
: returns the offset
signature(object = "onlearn")
: returns the
buffer size
signature(object = "onlearn")
: returns the last
decision function value
signature(object = "onlearn")
: return the
kernel function used
signature(object = "onlearn")
: returns the
hyper-parameters used
signature(obj = "onlearn")
: the learning function
signature(object = "onlearn")
: the predict function
signature(object = "onlearn")
: returns model parameter
signature(object = "onlearn")
: show function
signature(object = "onlearn")
: returns the type
of problem
signature(object = "onlearn")
: returns the
stored data points
Alexandros Karatzoglou
alexandros.karatzoglou@ci.tuwien.ac.at
onlearn
, inlearn
## create toy data set
x <- rbind(matrix(rnorm(100),,2),matrix(rnorm(100)+3,,2))
y <- matrix(c(rep(1,50),rep(-1,50)),,1)
## initialize onlearn object
on <- inlearn(2,kernel="rbfdot",kpar=list(sigma=0.2),
type="classification")
## learn one data point at the time
for(i in sample(1:100,100))
on <- onlearn(on,x[i,],y[i],nu=0.03,lambda=0.1)
sign(predict(on,x))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.